945 resultados para Multiobjective evolutionary algorithms
Resumo:
In this paper, we address some issue related to evaluating and testing evolutionary algorithms. A landscape generator based on Gaussian functions is proposed for generating a variety of continuous landscapes as fitness functions. Through some initial experiments, we illustrate the usefulness of this landscape generator in testing evolutionary algorithms.
Resumo:
Water-alternating-gas (WAG) is an enhanced oil recovery method combining the improved macroscopic sweep of water flooding with the improved microscopic displacement of gas injection. The optimal design of the WAG parameters is usually based on numerical reservoir simulation via trial and error, limited by the reservoir engineer’s availability. Employing optimisation techniques can guide the simulation runs and reduce the number of function evaluations. In this study, robust evolutionary algorithms are utilized to optimise hydrocarbon WAG performance in the E-segment of the Norne field. The first objective function is selected to be the net present value (NPV) and two global semi-random search strategies, a genetic algorithm (GA) and particle swarm optimisation (PSO) are tested on different case studies with different numbers of controlling variables which are sampled from the set of water and gas injection rates, bottom-hole pressures of the oil production wells, cycle ratio, cycle time, the composition of the injected hydrocarbon gas (miscible/immiscible WAG) and the total WAG period. In progressive experiments, the number of decision-making variables is increased, increasing the problem complexity while potentially improving the efficacy of the WAG process. The second objective function is selected to be the incremental recovery factor (IRF) within a fixed total WAG simulation time and it is optimised using the same optimisation algorithms. The results from the two optimisation techniques are analyzed and their performance, convergence speed and the quality of the optimal solutions found by the algorithms in multiple trials are compared for each experiment. The distinctions between the optimal WAG parameters resulting from NPV and oil recovery optimisation are also examined. This is the first known work optimising over this complete set of WAG variables. The first use of PSO to optimise a WAG project at the field scale is also illustrated. Compared to the reference cases, the best overall values of the objective functions found by GA and PSO were 13.8% and 14.2% higher, respectively, if NPV is optimised over all the above variables, and 14.2% and 16.2% higher, respectively, if IRF is optimised.
Resumo:
International audience
Resumo:
In Part 1 of this thesis, we propose that biochemical cooperativity is a fundamentally non-ideal process. We show quantal effects underlying biochemical cooperativity and highlight apparent ergodic breaking at small volumes. The apparent ergodic breaking manifests itself in a divergence of deterministic and stochastic models. We further predict that this divergence of deterministic and stochastic results is a failure of the deterministic methods rather than an issue of stochastic simulations.
Ergodic breaking at small volumes may allow these molecular complexes to function as switches to a greater degree than has previously been shown. We propose that this ergodic breaking is a phenomenon that the synapse might exploit to differentiate Ca$^{2+}$ signaling that would lead to either the strengthening or weakening of a synapse. Techniques such as lattice-based statistics and rule-based modeling are tools that allow us to directly confront this non-ideality. A natural next step to understanding the chemical physics that underlies these processes is to consider \textit{in silico} specifically atomistic simulation methods that might augment our modeling efforts.
In the second part of this thesis, we use evolutionary algorithms to optimize \textit{in silico} methods that might be used to describe biochemical processes at the subcellular and molecular levels. While we have applied evolutionary algorithms to several methods, this thesis will focus on the optimization of charge equilibration methods. Accurate charges are essential to understanding the electrostatic interactions that are involved in ligand binding, as frequently discussed in the first part of this thesis.
Resumo:
This work aims to study the application of Genetic Algorithms in anaerobic digestion modeling, in particular when using dynamical models. Along the work, different types of bioreactors are shown, such as batch, semi-batch and continuous, as well as their mathematical modeling. The work intendeds to estimate the parameter values of two biological reaction model. For that, simulated results, where only one output variable, the produced biogas, is known, are fitted to the model results. For this reason, the problems associated with reverse optimization are studied, using some graphics that provide clues to the sensitivity and identifiability associated with the problem. Particular solutions obtained by the identifiability analysis using GENSSI and DAISY softwares are also presented. Finally, the optimization is performed using genetic algorithms. During this optimization the need to improve the convergence of genetic algorithms was felt. This need has led to the development of an adaptation of the genetic algorithms, which we called Neighbored Genetic Algorithms (NGA1 and NGA2). In order to understand if this new approach overcomes the Basic Genetic Algorithms (BGA) and achieves the proposed goals, a study of 100 full optimization runs for each situation was further developed. Results show that NGA1 and NGA2 are statistically better than BGA. However, because it was not possible to obtain consistent results, the Nealder-Mead method was used, where the initial guesses were the estimated results from GA; Algoritmos Evolucionários para a Modelação de Bioreactores Resumo: Neste trabalho procura-se estudar os algoritmos genéticos com aplicação na modelação da digestão anaeróbia e, em particular, quando se utilizam modelos dinâmicos. Ao longo do mesmo, são apresentados diferentes tipos de bioreactores, como os batch, semi-batch e contínuos, bem como a modelação matemática dos mesmos. Neste trabalho procurou-se estimar o valor dos parâmetros que constam num modelo de digestão anaeróbia para o ajustar a uma situação simulada onde apenas se conhece uma variável de output, o biogas produzido. São ainda estudados os problemas associados à optimização inversa com recurso a alguns gráficos que fornecem pistas sobre a sensibilidade e identifiacabilidade associadas ao problema da modelação da digestão anaeróbia. São ainda apresentadas soluções particulares de idenficabilidade obtidas através dos softwares GENSSI e DAISY. Finalmente é realizada a optimização do modelo com recurso aos algoritmos genéticos. No decorrer dessa optimização sentiu-se a necessidade de melhorar a convergência e, portanto, desenvolveu-se ainda uma adaptação dos algoritmos genéticos a que se deu o nome de Neighboured Genetic Algorithms (NGA1 e NGA2). No sentido de se compreender se as adaptações permitiam superar os algoritmos genéticos básicos e atingir as metas propostas, foi ainda desenvolvido um estudo em que o processo de optimização foi realizado 100 vezes para cada um dos métodos, o que permitiu concluir, estatisticamente, que os BGA foram superados pelos NGA1 e NGA2. Ainda assim, porque não foi possivel obter consistência nos resultados, foi usado o método de Nealder-Mead utilizado como estimativa inicial os resultados obtidos pelos algoritmos genéticos.
Resumo:
[EN] This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration in the design variables.The simultaneous minimization of the constrained weight (adding structuralweight and average distribution of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level) in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including
Resumo:
As one of the most competitive approaches to multi-objective optimization, evolutionary algorithms have been shown to obtain very good results for many realworld multi-objective problems. One of the issues that can affect the performance of these algorithms is the uncertainty in the quality of the solutions which is usually represented with the noise in the objective values. Therefore, handling noisy objectives in evolutionary multi-objective optimization algorithms becomes very important and is gaining more attention in recent years. In this paper we present ?-degree Pareto dominance relation for ordering the solutions in multi-objective optimization when the values of the objective functions are given as intervals. Based on this dominance relation, we propose an adaptation of the non-dominated sorting algorithm for ranking the solutions. This ranking method is then used in a standardmulti-objective evolutionary algorithm and a recently proposed novel multi-objective estimation of distribution algorithm based on joint variable-objective probabilistic modeling, and applied to a set of multi-objective problems with different levels of independent noise. The experimental results show that the use of the proposed method for solution ranking allows to approximate Pareto sets which are considerably better than those obtained when using the dominance probability-based ranking method, which is one of the main methods for noise handling in multi-objective optimization.
Resumo:
In practical applications of optimization it is common to have several conflicting objective functions to optimize. Frequently, these functions are subject to noise or can be of black-box type, preventing the use of derivative-based techniques. We propose a novel multiobjective derivative-free methodology, calling it direct multisearch (DMS), which does not aggregate any of the objective functions. Our framework is inspired by the search/poll paradigm of direct-search methods of directional type and uses the concept of Pareto dominance to maintain a list of nondominated points (from which the new iterates or poll centers are chosen). The aim of our method is to generate as many points in the Pareto front as possible from the polling procedure itself, while keeping the whole framework general enough to accommodate other disseminating strategies, in particular, when using the (here also) optional search step. DMS generalizes to multiobjective optimization (MOO) all direct-search methods of directional type. We prove under the common assumptions used in direct search for single objective optimization that at least one limit point of the sequence of iterates generated by DMS lies in (a stationary form of) the Pareto front. However, extensive computational experience has shown that our methodology has an impressive capability of generating the whole Pareto front, even without using a search step. Two by-products of this paper are (i) the development of a collection of test problems for MOO and (ii) the extension of performance and data profiles to MOO, allowing a comparison of several solvers on a large set of test problems, in terms of their efficiency and robustness to determine Pareto fronts.
Resumo:
Here a multiobjective performance index for distribution systems with distributed generation based on a steady-state analysis of the network is proposed. This index quantifies the distributed generation impact on total losses, voltage profile and short circuit currents, and will be used as objective function in an evolutionary algorithm aimed at searching the best points for connecting distributed generators. Moreover, a loss allocation technique, based on the Zbus method, is applied on the original configuration of the network to obtain a good quality initial population. An IEEE medium voltage distribution network is analysed and results are presented and discussed.
Resumo:
This paper proposes an alternative codification to solve the service restoration in electric power distribution networks using a SPEA2 multiobjective evolutionary algorithm, assuming the minimization of both the load not supplied and the number of switching operations involved in the restoration plan. Constrains as the line, power source and voltage drop limits in order to avoid the activation of protective devices are all included in the proposed algorithm. Experimental results have shown the convenience on considering these new representations in the sense of feasibility maintenance and also in the sense of better approximation to the Pareto set. ©2009 IEEE.
Resumo:
Evolutionary algorithms are suitable to solve damage identification problems in a multiobjective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this paper, a statistic structural damage detection method formulated in a multiobjective context is proposed. The statistic analysis is implemented to take into account the uncertainties existing in the structural model and measured structural modal parameters. The presented method is verified by a number of simulated damage scenarios. The effects of noise and damage levels on damage detection are investigated.
Resumo:
This paper presents a new methodology to estimate unbalanced harmonic distortions in a power system, based on measurements of a limited number of given sites. The algorithm utilizes evolutionary strategies (ES), a development branch of evolutionary algorithms. The problem solving algorithm herein proposed makes use of data from various power quality meters, which can either be synchronized by high technology GPS devices or by using information from a fundamental frequency load flow, what makes the overall power quality monitoring system much less costly. The ES based harmonic estimation model is applied to a 14 bus network to compare its performance to a conventional Monte Carlo approach. It is also applied to a 50 bus subtransmission network in order to compare the three-phase and single-phase approaches as well as the robustness of the proposed method. (C) 2010 Elsevier B.V. All rights reserved.