An experimental study of adaptive control for evolutionary algorithms
Contribuinte(s) |
Laboratoire d'Etudes et de Recherche en Informatique d'Angers (LERIA) ; Université d'Angers (UA) |
---|---|
Data(s) |
2015
|
Resumo |
International audience <p>In this paper, we investigate how adaptive operator selection techniques are able to efficiently manage the balance between exploration and exploitation in an evolutionary algorithm, when solving combinatorial optimization problems. We introduce new high level reactive search strategies based on a generic algorithm's controller that is able to schedule the basic variation operators of the evolutionary algorithm, according to the observed state of the search. Our experiments on SAT instances show that reactive search strategies improve the performance of the solving algorithm.</p> |
Identificador |
hal-01392219 https://hal.archives-ouvertes.fr/hal-01392219 DOI : 10.1016/j.asoc.2015.06.016 OKINA : ua13400 |
Idioma(s) |
en |
Publicador |
HAL CCSD Elsevier |
Relação |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2015.06.016 |
Fonte |
ISSN: 1568-4946 Applied Soft Computing https://hal.archives-ouvertes.fr/hal-01392219 Applied Soft Computing, Elsevier, 2015, 35, pp.359-372. <http://www.sciencedirect.com/science/article/pii/S1568494615003658>. <10.1016/j.asoc.2015.06.016> http://www.sciencedirect.com/science/article/pii/S1568494615003658 |
Palavras-Chave | #adaptive operator selection #Algorithms #Design experimentation #evolutionary algorithms #Measurement #Performance #[INFO] Computer Science [cs] |
Tipo |
info:eu-repo/semantics/article Journal articles |