897 resultados para Molecules - Models - Computer simulation
Resumo:
Die vorliegende Doktorarbeit befasst sich mit klassischen Vektor-Spingläsern eine Art von ungeordneten Magneten - auf verschiedenen Gittertypen. Da siernbedeutsam für eine experimentelle Realisierung sind, ist ein theoretisches Verständnis von Spinglas-Modellen mit wenigen Spinkomponenten und niedriger Gitterdimension von großer Bedeutung. Da sich dies jedoch als sehr schwierigrnerweist, sind neue, aussichtsreiche Ansätze nötig. Diese Arbeit betrachtet daher den Limesrnunendlich vieler Spindimensionen. Darin entstehen mehrere Vereinfachungen im Vergleichrnzu Modellen niedriger Spindimension, so dass für dieses bedeutsame Problem Eigenschaften sowohl bei Temperatur Null als auch bei endlichen Temperaturenrnüberwiegend mit numerischen Methoden ermittelt werden. Sowohl hyperkubische Gitter als auch ein vielseitiges 1d-Modell werden betrachtet. Letzteres erlaubt es, unterschiedliche Universalitätsklassen durch bloßes Abstimmen eines einzigen Parameters zu untersuchen. "Finite-size scaling''-Formen, kritische Exponenten, Quotienten kritischer Exponenten und andere kritische Größen werden nahegelegt und mit numerischen Ergebnissen verglichen. Eine detaillierte Beschreibung der Herleitungen aller numerisch ausgewerteter Gleichungen wird ebenso angegeben. Bei Temperatur Null wird eine gründliche Untersuchung der Grundzustände und Defektenergien gemacht. Eine Reihe interessanter Größen wird analysiert und insbesondere die untere kritische Dimension bestimmt. Bei endlicher Temperatur sind der Ordnungsparameter und die Spinglas-Suszeptibilität über die numerisch berechnete Korrelationsmatrix zugänglich. Das Spinglas-Modell im Limes unendlich vieler Spinkomponenten kann man als Ausgangspunkt zur Untersuchung der natürlicheren Modelle mit niedriger Spindimension betrachten. Wünschenswert wäre natürlich ein Modell, das die Vorteile des ersten mit den Eigenschaften des zweiten verbände. Daher wird in Modell mit Anisotropie vorgeschlagen und getestet, mit welchem versucht wird, dieses Ziel zu erreichen. Es wird auf reizvolle Wege hingewiesen, das Modell zu nutzen und eine tiefergehende Beschäftigung anzuregen. Zuletzt werden sogenannte "real-space" Renormierungsgruppenrechnungen sowohl analytisch als auch numerisch für endlich-dimensionale Vektor-Spingläser mit endlicher Anzahl von Spinkomponenten durchgeführt. Dies wird mit einer zuvor bestimmten neuen Migdal-Kadanoff Rekursionsrelation geschehen. Neben anderen Größen wird die untere kritische Dimension bestimmt.
Resumo:
Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.
Resumo:
Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion.
Resumo:
The development of electrophoretic computer models and their use for simulation of electrophoretic processes has increased significantly during the last few years. Recently, GENTRANS and SIMUL5 were extended with algorithms that describe chemical equilibria between solutes and a buffer additive in a fast 1:1 interaction process, an approach that enables simulation of the electrophoretic separation of enantiomers. For acidic cationic systems with sodium and H3 0(+) as leading and terminating components, respectively, acetic acid as counter component, charged weak bases as samples, and a neutral CD as chiral selector, the new codes were used to investigate the dynamics of isotachophoretic adjustment of enantiomers, enantiomer separation, boundaries between enantiomers and between an enantiomer and a buffer constituent of like charge, and zone stability. The impact of leader pH, selector concentration, free mobility of the weak base, mobilities of the formed complexes and complexation constants could thereby be elucidated. For selected examples with methadone enantiomers as analytes and (2-hydroxypropyl)-β-CD as selector, simulated zone patterns were found to compare well with those monitored experimentally in capillary setups with two conductivity detectors or an absorbance and a conductivity detector. Simulation represents an elegant way to provide insight into the formation of isotachophoretic boundaries and zone stability in presence of complexation equilibria in a hitherto inaccessible way.
Resumo:
The social processes that lead to destructive behavior in celebratory crowds can be studied through an agent-based computer simulation. Riots are an increasingly common outcome of sports celebrations, and pose the potential for harm to participants, bystanders, property, and the reputation of the groups with whom participants are associated. Rioting cannot necessarily be attributed to the negative emotions of individuals, such as anger, rage, frustration and despair. For instance, the celebratory behavior (e.g., chanting, cheering, singing) during UConn’s “Spring Weekend” and after the 2004 NCAA Championships resulted in several small fires and overturned cars. Further, not every individual in the area of a riot engages in violence, and those who do, do not do so continuously. Instead, small groups carry out the majority of violent acts in relatively short-lived episodes. Agent-based computer simulations are an ideal method for modeling complex group-level social phenomena, such as celebratory gatherings and riots, which emerge from the interaction of relatively “simple” individuals. By making simple assumptions about individuals’ decision-making and behaviors and allowing actors to affect one another, behavioral patterns emerge that cannot be predicted by the characteristics of individuals. The computer simulation developed here models celebratory riot behavior by repeatedly evaluating a single algorithm for each individual, the inputs of which are affected by the characteristics of nearby actors. Specifically, the simulation assumes that (a) actors possess 1 of 5 distinct social identities (group memberships), (b) actors will congregate with actors who possess the same identity, (c) the degree of social cohesion generated in the social context determines the stability of relationships within groups, and (d) actors’ level of aggression is affected by the aggression of other group members. Not only does this simulation provide a systematic investigation of the effects of the initial distribution of aggression, social identification, and cohesiveness on riot outcomes, but also an analytic tool others may use to investigate, visualize and predict how various individual characteristics affect emergent crowd behavior.
Resumo:
The aim of this thesis is the subjective and objective evaluation of angledependent absorption coefficients. As the assumption of a constant absorption coefficient over the angle of incidence is not always held, a new model acknowledging an angle-dependent reflection must be considered, to get a more accurate prediction in the sound field. The study provides information about the behavior of different materials in several rooms, depending on the reflection modeling of incident sound waves. An objective evaluation was run for an implementation of angle-dependent reflection factors in the image source and ray tracing simulation models. Results obtained were analysed after comparison to diffuse-field averaged data. However, changes in acoustic characteristics of a room do not always mean a variation in the listener’s perception. Thus, additional subjective evaluation allowed a comparison between the different results obtained with the computer simulation and the response from the individuals who participated in the listening test. The listening test was designed following a three-alternative forced-choice (3AFC) paradigm. In each interaction asked to the subjects a sequence of either three pink noise bursts or three natural signals was alternated. These results were supposed to show the influence and perception of the two different ways to implement surface reflection –either with diffuse or angle-dependent absorption properties. Results show slightly audible effects when material properties were exaggerated. El objetivo de este trabajo es la evaluación objetiva y subjetiva del coeficiente de absorción en función del ángulo de incidencia de la onda de sonido. La suposición de un coeficiente de absorción constante con respecto al ángulo de incidencia no siempre se sostiene. Por ello, un nuevo modelo considerando la reflexión dependiente del ángulo se debe tener en cuenta para obtener predicciones más certeras en el campo del sonido. El estudio proporciona información sobre el comportamiento de diferentes materiales en distintos recintos, dependientes del modelo de reflexión de las ondas de sonido incidentes. Debido a las dificultades a la hora de realizar las medidas y, por lo tanto, a la falta de datos, los coeficientes de absorción dependientes del ángulo a menudo no se tienen en cuenta a la hora de realizar las simulaciones. Hoy en día, aún no hay una tendencia de aplicar el coeficiente de absorción dependiente del ángulo para mejorar los modelos de reflexión. Por otra parte, para una medición satisfactoria de la absorción dependiente del ángulo, sólo hay unos pocos métodos. Las técnicas de medición actuales llevan mucho tiempo y hay algunos materiales, condiciones y ángulos que no pueden ser reproducidos y, por lo tanto, no es posible su medición. Sin embargo, en el presente estudio, los ángulos de incidencia de las ondas de sonido son conocidos y almacenados en una de base de datos para cada uno de los materiales, de modo que los coeficientes de absorción para el ángulo dado pueden ser devueltos siempre que sean requeridos por el usuario. Para realizar el estudio se llevó a cabo una evaluación objetiva, por medio de la implementación del factor de reflexión dependiente del ángulo en los modelos de fuentes imagen y trazado de rayos. Los resultados fueron analizados después de ser comparados con el promedio de los datos obtenidos en medidas en el campo difuso. La simulación se hizo una vez se configuraron un número de materiales creados por el autor, a partir de los datos existentes en la literatura y los catálogos de fabricantes. Los modelos de Komatsu y Mechel sirvieron como referencia para los materiales porosos, configurando la resistividad al aire o el grosor, y para los paneles perforados, introduciendo el radio de los orificios y la distancia entre centros, respectivamente. Estos materiales se situaban en la pared opuesta a la que se consideraba que debía alojar a la fuente sonora. El resto de superficies se modelaban con el mismo material, variando su coeficiente de absorción y/o de dispersión. Al mismo tiempo, una serie de recintos fueron modelados para poder reproducir distintos escenarios de los que obtener los resultados. Sin embargo, los cambios en las características acústicas de un recinto no significan variaciones en la percepción por parte del oyente. Por ello, una evaluación subjetiva adicional permitió una comparación entre los diferentes resultados obtenidos mediante la simulación informática y la respuesta de los individuos que participaron en la prueba de escucha. Ésta fue diseñada bajo las pautas del modelo de test three-alternative forced-choice (3AFC), con treinta y dos preguntas diferentes. En cada iteración los sujetos fueron preguntados por una secuencia alterna entre tres señales, siendo dos de ellas iguales. Éstas podían ser tanto ráfagas de ruido rosa como señales naturales, en este test se utilizó un fragmento de una obra clásica interpretada por un piano. Antes de contestar al cuestionario, los bloques de preguntas eran ordenados al azar. Para cada ensayo, la mezcla era diferente, así los sujetos no repetían la misma prueba, evitando un sesgo por efectos de aprendizaje. Los bloques se barajaban recordando siempre el orden inicial, para después almacenar los resultados reordenados. La prueba de escucha fue realizada por veintitrés personas, toda ellas con conocimientos dentro del campo de la acústica. Antes de llevar a cabo la prueba de escucha en un entorno adecuado, una hoja con las instrucciones fue facilitada a cada persona. Los resultados muestran la influencia y percepción de las dos maneras distintas de implementar las reflexiones de una superficie –ya sea con respecto a la propiedad de difusión o de absorción dependiente del ángulo de los materiales. Los resultados objetivos, después de ejecutar las simulaciones, muestran los datos medios obtenidos para comprender el comportamiento de distintos materiales de acuerdo con el modelo de reflexión utilizado en el caso de estudio. En las tablas proporcionadas en la memoria se muestran los valores del tiempo de reverberación, la claridad y el tiempo de caída temprana. Los datos de las características del recinto obtenidos en este análisis tienen una fuerte dependencia respecto al coeficiente de absorción de los diferentes materiales que recubren las superficies del cuarto. En los resultados subjetivos, la media de percepción, a la hora de distinguir las distintas señales, por parte de los sujetos, se situó significativamente por debajo del umbral marcado por el punto de inflexión de la función psicométrica. Sin embargo, es posible concluir que la mayoría de los individuos tienden a ser capaces de detectar alguna diferencia entre los estímulos presentados en el 3AFC test. En conclusión, la hipótesis de que los valores del coeficiente de absorción dependiente del ángulo difieren es contrastada. Pero la respuesta subjetiva de los individuos muestra que únicamente hay ligeras variaciones en la percepción si el coeficiente varía en intervalos pequeños entre los valores manejados en la simulación. Además, si los parámetros de los materiales acústicos no son exagerados, los sujetos no perciben ninguna variación. Los primeros resultados obtenidos, proporcionando información respecto a la dependencia del ángulo, llevan a una nueva consideración en el campo de la acústica, y en la realización de nuevos proyectos en el futuro. Para futuras líneas de investigación, las simulaciones se deberían realizar con distintos tipos de recintos, buscando escenarios con geometrías irregulares. También, la implementación de distintos materiales para obtener resultados más certeros. Otra de las fases de los futuros proyectos puede realizarse teniendo en cuenta el coeficiente de dispersión dependiente del ángulo de incidencia de la onda de sonido. En la parte de la evaluación subjetiva, realizar una serie de pruebas de escucha con distintos individuos, incluyendo personas sin una formación relacionada con la ingeniería acústica.
Resumo:
We describe a procedure for the generation of chemically accurate computer-simulation models to study chemical reactions in the condensed phase. The process involves (i) the use of a coupled semiempirical quantum and classical molecular mechanics method to represent solutes and solvent, respectively; (ii) the optimization of semiempirical quantum mechanics (QM) parameters to produce a computationally efficient and chemically accurate QM model; (iii) the calibration of a quantum/classical microsolvation model using ab initio quantum theory; and (iv) the use of statistical mechanical principles and methods to simulate, on massively parallel computers, the thermodynamic properties of chemical reactions in aqueous solution. The utility of this process is demonstrated by the calculation of the enthalpy of reaction in vacuum and free energy change in aqueous solution for a proton transfer involving methanol, methoxide, imidazole, and imidazolium, which are functional groups involved with proton transfers in many biochemical systems. An optimized semiempirical QM model is produced, which results in the calculation of heats of formation of the above chemical species to within 1.0 kcal/mol (1 kcal = 4.18 kJ) of experimental values. The use of the calibrated QM and microsolvation QM/MM (molecular mechanics) models for the simulation of a proton transfer in aqueous solution gives a calculated free energy that is within 1.0 kcal/mol (12.2 calculated vs. 12.8 experimental) of a value estimated from experimental pKa values of the reacting species.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
In this paper we investigate the difference between the adsorption of spherical molecule argon (at 87.3 K) and the flexible normal butane (at an equivalent temperature of 150 K) in carbon slit pores. These temperatures are equivalent in the sense that they have the same relative distances between their respective triple points and critical points. Higher equivalent temperatures are also studied (122.67 K for argon and 303 K for n-butane) to investigate the effects of temperature on the 2D-transition in adsorbed density. The Grand Canonical Monte Carlo simulation is used to study the adsorption of these two model adsorbates. Beside the longer computation times involved in the computation of n-butane adsorption, n-butane exhibits many interesting behaviors such as: (i) the onset of adsorption occurs sooner (in terms of relative pressure), (ii) the hysteresis for 2D- and 3D-transitions is larger, (iii) liquid-solid transition is not possible, (iv) 2D-transition occurs for n-butane at 150 K while it does not happen for argon except for pores that accommodate two layers of molecules, (v) the maximum pore density is about four times less than that of argon and (vi) the sieving pore width is slightly larger than that for argon. Finally another feature obtained from the Grand Canonical Monte Carlo (GCMC) simulation is the configurational arrangement of molecules in pores. For spherical argon, the arrangement is rather well structured, while for n-butane the arrangement depends very much on the pore size. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This thesis describes work carried out to improve the fundamental modelling of liquid flows on distillation trays. A mathematical model is presented based on the principles of computerised fluid dynamics. It models the liquid flow in the horizontal directions allowing for the effects of the vapour through the use of an increased liquid turbulence, modelled by an eddy viscosity, and a resistance to liquid flow caused by the vapour being accelerated horizontally by the liquid. The resultant equations are similar to the Navier-Stokes equations with the addition of a resistance term.A mass-transfer model is used to calculate liquid concentration profiles and tray efficiencies. A heat and mass transfer analogy is used to compare theoretical concentration profiles to experimental water-cooling data obtained from a 2.44 metre diameter air-water distillation simulation rig. The ratios of air to water flow rates are varied in order to simulate three pressures: vacuum, atmospheric pressure and moderate pressure.For simulated atmospheric and moderate pressure distillation, the fluid mechanical model constantly over-predicts tray efficiencies with an accuracy of between +1.7% and +11.3%. This compares to -1.8% to -10.9% for the stagnant regions model (Porter et al. 1972) and +12.8% to +34.7% for the plug flow plus back-mixing model (Gerster et al. 1958). The model fails to predict the flow patterns and tray efficiencies for vacuum simulation due to the change in the mechanism of liquid transport, from a liquid continuous layer to a spray as the liquid flow-rate is reduced. This spray is not taken into account in the development of the fluid mechanical model. A sensitivity analysis carried out has shown that the fluid mechanical model is relatively insensitive to the prediction of the average height of clear liquid, and a reduction in the resistance term results in a slight loss of tray efficiency. But these effects are not great. The model is quite sensitive to the prediction of the eddy viscosity term. Variations can produce up to a 15% decrease in tray efficiency. The fluid mechanical model has been incorporated into a column model so that statistical optimisation techniques can be employed to fit a theoretical column concentration profile to experimental data. Through the use of this work mass-transfer data can be obtained.
Resumo:
During the past three decades, the use of roundabouts has increased throughout the world due to their greater benefits in comparison with intersections controlled by traditional means. Roundabouts are often chosen because they are widely associated with low accident rates, lower construction and operating costs, and reasonable capacities and delay. ^ In the planning and design of roundabouts, special attention should be given to the movement of pedestrians and bicycles. As a result, there are several guidelines for the design of pedestrian and bicycle treatments at roundabouts that increase the safety of both pedestrians and bicyclists at existing and proposed roundabout locations. Different design guidelines have differing criteria for handling pedestrians and bicyclists at roundabout locations. Although all of the investigated guidelines provide better safety (depending on the traffic conditions at a specific location), their effects on the performance of the roundabout have not been examined yet. ^ Existing roundabout analysis software packages provide estimates of capacity and performance characteristics. This includes characteristics such as delay, queue lengths, stop rates, effects of heavy vehicles, crash frequencies, and geometric delays, as well as fuel consumption, pollutant emissions and operating costs for roundabouts. None of these software packages, however, are capable of determining the effects of various pedestrian crossing locations, nor the effect of different bicycle treatments on the performance of roundabouts. ^ The objective of this research is to develop simulation models capable of determining the effect of various pedestrian and bicycle treatments at single-lane roundabouts. To achieve this, four models were developed. The first model simulates a single-lane roundabout without bicycle and pedestrian traffic. The second model simulates a single-lane roundabout with a pedestrian crossing and mixed flow bicyclists. The third model simulates a single-lane roundabout with a combined pedestrian and bicycle crossing, while the fourth model simulates a single-lane roundabout with a pedestrian crossing and a bicycle lane at the outer perimeter of the roundabout for the bicycles. Traffic data was collected at a modern roundabout in Boca Raton, Florida. ^ The results of this effort show that installing a pedestrian crossing on the roundabout approach will have a negative impact on the entry flow, while the downstream approach will benefit from the newly created gaps by pedestrians. Also, it was concluded that a bicycle lane configuration is more beneficial for all users of the roundabout instead of the mixed flow or combined crossing. Installing the pedestrian crossing at one-car length is more beneficial for pedestrians than two- and three-car lengths. Finally, it was concluded that the effect of the pedestrian crossing on the vehicle queues diminishes as the distance between the crossing and the roundabout increases. ^
Resumo:
Proteins are specialized molecules that catalyze most of the reactions that can sustain life, and they become functional by folding into a specific 3D structure. Despite their importance, the question, "how do proteins fold?" - first pondered in in the 1930's - is still listed as one of the top unanswered scientific questions as of 2005, according to the journal Science. Answering this question would provide a foundation for understanding protein function and would enable improved drug targeting, efficient biofuel production, and stronger biomaterials. Much of what we currently know about protein folding comes from studies on small, single-domain proteins, which may be quite different from the folding of large, multidomain proteins that predominate the proteomes of all organisms.
In this thesis I will discuss my work to fill this gap in understanding by studying the unfolding and refolding of large, multidomain proteins using the powerful combination of single-molecule force-spectroscopy experiments and molecular dynamic simulations.
The three model proteins studied - Luciferase, Protein S, and Streptavidin - lend insight into the inter-domain dependence for unfolding and the subdomain stabilization of binding ligands, and ultimately provide new insight into atomistic details of the intermediate states along the folding pathway.