973 resultados para Mixed-integer dynamic optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last few years, the Data Center market has increased exponentially and this tendency continues today. As a direct consequence of this trend, the industry is pushing the development and implementation of different new technologies that would improve the energy consumption efficiency of data centers. An adaptive dashboard would allow the user to monitor the most important parameters of a data center in real time. For that reason, monitoring companies work with IoT big data filtering tools and cloud computing systems to handle the amounts of data obtained from the sensors placed in a data center.Analyzing the market trends in this field we can affirm that the study of predictive algorithms has become an essential area for competitive IT companies. Complex algorithms are used to forecast risk situations based on historical data and warn the user in case of danger. Considering that several different users will interact with this dashboard from IT experts or maintenance staff to accounting managers, it is vital to personalize it automatically. Following that line of though, the dashboard should only show relevant metrics to the user in different formats like overlapped maps or representative graphs among others. These maps will show all the information needed in a visual and easy-to-evaluate way. To sum up, this dashboard will allow the user to visualize and control a wide range of variables. Monitoring essential factors such as average temperature, gradients or hotspots as well as energy and power consumption and savings by rack or building would allow the client to understand how his equipment is behaving, helping him to optimize the energy consumption and efficiency of the racks. It also would help him to prevent possible damages in the equipment with predictive high-tech algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extension of the logic outer-approximation algorithm for dealing with disjunctive discrete-continuous optimal control problems whose dynamic behavior is modeled in terms of differential-algebraic equations. Although the proposed algorithm can be applied to a wide variety of discrete-continuous optimal control problems, we are mainly interested in problems where disjunctions are also present. Disjunctions are included to take into account only certain parts of the underlying model which become relevant under some processing conditions. By doing so the numerical robustness of the optimization algorithm improves since those parts of the model that are not active are discarded leading to a reduced size problem and avoiding potential model singularities. We test the proposed algorithm using three examples of different complex dynamic behavior. In all the case studies the number of iterations and the computational effort required to obtain the optimal solutions is modest and the solutions are relatively easy to find.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic Optimization Problems (DOPs) have been widely studied using Evolutionary Algorithms (EAs). Yet, a clear and rigorous definition of DOPs is lacking in the Evolutionary Dynamic Optimization (EDO) community. In this paper, we propose a unified definition of DOPs based on the idea of multiple-decision-making discussed in the Reinforcement Learning (RL) community. We draw a connection between EDO and RL by arguing that both of them are studying DOPs according to our definition of DOPs. We point out that existing EDO or RL research has been mainly focused on some types of DOPs. A conceptualized benchmark problem, which is aimed at the systematic study of various DOPs, is then developed. Some interesting experimental studies on the benchmark reveal that EDO and RL methods are specialized in certain types of DOPs and more importantly new algorithms for DOPs can be developed by combining the strength of both EDO and RL methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Йордан Йорданов, Андрей Василев - В работата се изследват методи за решаването на задачи на оптималното управление в дискретно време с безкраен хоризонт и явни управления. Дадена е обосновка на една процедура за решаване на такива задачи, базирана на множители на Лагранж, коята често се употребява в икономическата литература. Извеждени са необходимите условия за оптималност на базата на уравнения на Белман и са приведени достатъчни условия за оптималност при допускания, които често се използват в икономиката.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tanulmány a variációszámítás gazdasági alkalmazásaiból ismertet hármat. Mindhárom alkalmazás a Leontief-modellen alapszik. Az optimális pályák vizsgálata után arra keressük a választ, hogy az Euler–Lagrange-differenciálegyenlet rendszerrel kapott megoldások valóban optimális megoldásai-e a modelleknek. Arra a következtetésre jut a tanulmány, hogy csak pótlólagos közgazdasági feltételek bevezetésével határozhatók meg az optimális megoldások. Ugyanakkor a megfogalmazott feltételek segítségével az ismertetett modellek egy általánosabb keretbe illeszthetők. A tanulmány végső eredménye az, hogy mind a három modell optimális megoldása a Neumann-sugárnak felel meg. /===/ The study presents three economic applications of variation calculations. All three rely on the Leontief model. After examination of the optimal courses, an answer is sought to whether the solutions to the Euler–Lagrange differential equation system are really opti-mal solutions to the models. The study concludes that the optimal solutions can only be determined by introducing additional economic conditions. At the same time, the models presented can be fitted into a general framework with the help of the conditions outlined. The final conclusion of the study is that the optimal solution of all three models fits into the Neumann band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of distributed energy resources, based on natural intermittent power sources, like wind generation, in power systems imposes the development of new adequate operation management and control methodologies. A short-term Energy Resource Management (ERM) methodology performed in two phases is proposed in this paper. The first one addresses the day-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. The ERM scheduling is a complex optimization problem due to the high quantity of variables and constraints. In this paper the main goal is to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixedinteger non-linear programming approach. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units and 1000 electric vehicles has been implemented in a simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.