992 resultados para Minimal Process
Resumo:
This thesis examines the empirical evidence for the transferability of Japanese soft technology (JST) or Japanese work organisation within two government-initiated, Malaysian-Japanese strategic alliances: PROTON and PERNEC. The government, through its Look East Policy (LEP) began in 1982, taking Japan (and South Korea) as models and partners in Malaysian economic and industrial development process, and expected these alliances to learn the good aspects of Japanese work organisations and management styles in order for them to become independent companies, both technologically and economically. The thesis found that the alliances have been successfully taking and utilising Japanese parts, components, tools, robots and machines; i.e. the 'ready-made hard technology'. [Whereas the important element of soft technology has been ignored]. The soft technology has been slowly and marginally transferred because neither local parties nor their Japanese counterparts within the alliances consider the acquisition or transfer of soft technology to be the main concern or a part of business plan. Although many factors influence management transfer, the thesis has focused on the eagerness and the capability of Malaysian managerial teams to acquire and, to a lesser extent, the readiness of the Japanese to transfer the technology. It was found that there is a lack of demand on technology acquisition by Malaysian managers and lack of responsibility to transfer the technology among Japanese experts. However, the political and social pressures on these alliances, the industrial climate and labour market, leaderships and management system of alliances, and Japanese MNCs regional and global corporate strategies have contributed to the high level of transfer of JST at PROTON compared to PERNEC. The research also found that Malaysian industrial and investment policies have favoured foreign investment but there is a lack of strategies for nurturing indigenous technological development.On the other hand the Japanese MNCs and public agencies have been operating in Malaysia and guided by their regional and global corporate strategies and less concerned with Malaysian technological development. In conclusion, empirically, the JST transfer is minimal. The transfer has been influenced by internal contingency factors of organisation; external industrial, political and cultural environmental factors; and last but not least the Japanese MNCs' global and regional corporate strategies. The transfer of Japanese management in this research is inclined towards core-periphery transfer model, it is also related to organisational and national technological capability.
Resumo:
A graphical process control language has been developed as a means of defining process control software. The user configures a block diagram describing the required control system, from a menu of functional blocks, using a graphics software system with graphics terminal. Additions may be made to the menu of functional blocks, to extend the system capability, and a group of blocks may be defined as a composite block. This latter feature provides for segmentation of the overall system diagram and the repeated use of the same group of blocks within the system. The completed diagram is analyzed by a graphics compiler which generates the programs and data structure to realise the run-time software. The run-time software has been designed as a data-driven system which allows for modifications at the run-time level in both parameters and system configuration. Data structures have been specified to ensure efficient execution and minimal storage requirements in the final control software. Machine independence has been accomodated as far as possible using CORAL 66 as the high level language throughout the entire system; the final run-time code being generated by a CORAL 66 compiler appropriate to the target processor.
Resumo:
Methodologies for understanding business processes and their information systems (IS) are often criticized, either for being too imprecise and philosophical (a criticism often levied at softer methodologies) or too hierarchical and mechanistic (levied at harder methodologies). The process-oriented holonic modelling methodology combines aspects of softer and harder approaches to aid modellers in designing business processes and associated IS. The methodology uses holistic thinking and a construct known as the holon to build process descriptions into a set of models known as a holarchy. This paper describes the methodology through an action research case study based in a large design and manufacturing organization. The scientific contribution is a methodology for analysing business processes in environments that are characterized by high complexity, low volume and high variety where there are minimal repeated learning opportunities, such as large IS development projects. The practical deliverables from the project gave IS and business process improvements for the case study company.
Resumo:
The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.
Resumo:
Crystallization is employed in different industrial processes. The method and operation can differ depending on the nature of the substances involved. The aim of this study is to examine the effect of various operating conditions on the crystal properties in a chemical engineering design window with a focus on ultrasound assisted cooling crystallization. Batch to batch variations, minimal manufacturing steps and faster production times are factors which continuous crystallization seeks to resolve. Continuous processes scale-up is considered straightforward compared to batch processes owing to increase of processing time in the specific reactor. In cooling crystallization process, ultrasound can be used to control the crystal properties. Different model compounds were used to define the suitable process parameters for the modular crystallizer using equal operating conditions in each module. A final temperature of 20oC was employed in all experiments while the operating conditions differed. The studied process parameters and configuration of the crystallizer were manipulated to achieve a continuous operation without crystal clogging along the crystallization path. The results from the continuous experiment were compared with the batch crystallization results and analysed using the Malvern Morphologi G3 instrument to determine the crystal morphology and CSD. The modular crystallizer was operated successfully with three different residence times. At optimal process conditions, a longer residence time gives smaller crystals and narrower CSD. Based on the findings, at a constant initial solution concentration, the residence time had clear influence on crystal properties. The equal supersaturation criterion in each module offered better results compared to other cooling profiles. The combination of continuous crystallization and ultrasound has large potential to overcome clogging, obtain reproducible and narrow CSD, specific crystal morphologies and uniform particle sizes, and exclusion of milling stages in comparison to batch processes.