98 resultados para Micropores
Resumo:
Hierarchical Fe/ZSM-5 zeolites were synthesized with a diquaternary ammonium surfactant containing a hydrophobic tail and extensively characterized by XRD, Ar porosimetry, TEM, DRUV-Vis, and UV-Raman spectroscopy. Their catalytic activities in catalytic decomposition of NO and the oxidation of benzene to phenol with NO as the oxidant were also determined. The hierarchical zeolites consist of thin sheets limited in growth in the b-direction (along the straight channels of the MFI network) and exhibit similar high hydrothermal stability as a reference Fe/ZSM-5 zeolite. Spectroscopic and catalytic investigations point to subtle differences in the extent of Fe agglomeration with the sheet-like zeolites having a higher proportion of isolated Fe centers than the reference zeolite. As a consequence, these zeolites have a somewhat lower activity in catalytic NO decomposition (catalyzed by oligomeric Fe), but display higher activity in benzene oxidation (catalyzed by monomeric Fe). The sheet-like zeolites deactivate much slower than bulk Fe/ZSM-5, which is attributed to the much lower probability of secondary reactions of phenol in the short straight channels of the sheets. The deactivation rate decreases with decreasing Fe content of the Fe/ZSM-5 nanosheets. It is found that carbonaceous materials are mainly deposited in the mesopores between the nanosheets and much less so in the micropores. This contrasts the strong decrease in the micropore volume of bulk Fe/ZSM-5 due to rapid clogging of the continuous micropore network. The formation of coke deposits is limited in the nanosheet zeolites because of the short molecular trafficking distances. It is argued that at high Si/Fe content, coke deposits mainly form on the external surface of the nanosheets. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Carbon composite monoliths were prepared from a commercial phenolic resin mixed with just 1 wt% of carbon nanotubes (CNTs) followed by carbonization and physical activation with CO. The products possess a hierarchical macroporous-microporous structure and superior CO adsorption properties. In particular, they show the top-ranked CO capacity (52 mg CO per g adsorbent at 25 °C and 114 mmHg) under low CO partial pressures, which is of more relevance for flue gas applications. This matches or exceeds those of carbons produced by complex chemical activation and functionalization. Our study demonstrates an effective way to create narrow micropores through structural modification of carbon composites by CNTs. © 2013 The Royal Society of Chemistry.
Resumo:
We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle (MN) arrays and skin barrier recovery in human volunteers. Such MN arrays, prepared from aqueous blends of hydrolyzed poly(methylvinylether/maleic anhydride) (15%, w/w) and the cross-linker poly(ethyleneglycol) 10,000 Da (7.5%, w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 μm by gentle hand pressure. The MN arrays swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 h in skin. Importantly, however, skin barrier function recovered within 24 h after MN removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required because transepidermal water loss measurements suggested micropore closure, whereas optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 h after MN had been removed. There were no complaints of skin reactions, adverse events, or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 h, and no adverse events were present on follow-up.
Resumo:
Purpose: To investigate, for the first time, the influence of pharmacist intervention and the use of a patient information leaflet on self-application of hydrogel-forming microneedle arrays by human volunteers without the aid of an applicator device.
Methods: A patient information leaflet was drafted and pharmacist counselling strategy devised. Twenty human volunteers applied 11 × 11 arrays of 400 μm hydrogel-forming microneedle arrays to their own skin following the instructions provided. Skin barrier function disruption was assessed using transepidermal water loss measurements and optical coherence tomography and results compared to those obtained when more experienced researchers applied the microneedles to the volunteers or themselves.
Results: Volunteer self-application of the 400 μm microneedle design resulted in an approximately 30% increase in skin transepidermal water loss, which was not significantly different from that seen with self-application by the more experienced researchers or application to the volunteers. Use of optical coherence tomography showed that self-application of microneedles of the same density (400 μm, 600 μm and 900 μm) led to percentage penetration depths of approximately 75%, 70% and 60%, respectively, though the diameter of the micropores created remained quite constant at approximately 200 μm. Transepidermal water loss progressively increased with increasing height of the applied microneedles and this data, like that for penetration depth, was consistent, regardless of applicant.
Conclusion: We have shown that hydrogel-forming microneedle arrays can be successfully and reproducibly applied by human volunteers given appropriate instruction. If these outcomes were able to be extrapolated to the general patient population, then use of bespoke MN applicator devices may not be necessary, thus possibly enhancing patient compliance.
Resumo:
O interesse crescente das membranas inorgânicas deve-se à potencial aplicação em novas áreas de investigação e da indústria, e em alternativa a operações mais convencionais. Em particular, as membranas de titanossilicatos oferecem vantagens importantes sobre as de zeólitos, pois podem ser sintetizadas sem agentes estruturantes orgânicos, para evitar a calcinação subsequente usualmente responsável por defeitos irreversíveis, exibem novas possibilidades de substituição isomórfica da matriz, permitindo um ajuste mais fino das propriedades catalíticas e de adsorção, e são capazes de separar misturas com base em diferenças de afinidade e tamanho molecular (efeito de peneiro). Os objectivos principais deste trabalho foram: i) a caracterização dinâmica de membranas do tipo zeolítico sintetizadas no Laboratório Associado CICECO, realizando-se experiências de permeação com gases puros e misturas; ii) o desenvolvimento e validação de novos modelos para a transferência de massa multicomponente através de membranas porosas pela abordagem de Maxwell-Stefan, tendo em conta os mecanismos específicos encontrados, particularmente a contribuição por difusão superficial; e iii) a modelação dos pontos experimentais medidos, bem como dados compilados da literatura. De forma a realizar os ensaios de permeação, desenhou-se, montou-se e testou-se uma instalação experimental. Para gases puros, os objectivos principais foram a medição de permeâncias a temperatura constante, por variação da pressão transmembranar r ( ΔP ), e de permeâncias a temperatura programada, conduzidas a ΔP constante. Seguidamente, calcularam-se as selectividades ideais. Em relação a misturas, a determinação de selectividades reais requer as fracções molares no permeado e no retido. Na globalidade, estudaram-se três suportes diferentes (aço inoxidável e α − alumina) e dezanove membranas de AM-3, ETS-10, ZSM-5 e zeólito 4A, utilizando-se H2, He, N2, CO2, e O2. A primeira avaliação exploratória da qualidade das membranas foi feita permeando azoto à temperatura ambiente. Assim, permeâncias superiores a 10−6 mol/m2s.Pa evidenciavam defeitos grosseiros, levando-nos a efectuar cristalizações adicionais sobre as primeiras camadas. Este procedimento foi implementado com oito membranas. Um trabalho experimental mais detalhado foi conduzido com cinco membranas. Membranas com curvas permeância-temperatura ( Π −T ) decrescentes indicam tipicamente transporte viscoso e de Knudsen, i.e. meso e macrodefeitos. Por exemplo, a membrana nº 3 de AM-3 exibiu este comportamento com H2, He, N2 e CO2 puros. A contribuição de Knudsen foi confirmada pela relação linear encontrada entre as permeâncias e o inverso da raiz quadrada da massa molar. O mecanismo viscoso foi também identificado, pois as permeâncias eram inversamente proporcionais à viscosidade do gás ou, atendendo a equações do tipo de Chapman-Enskog, directamente proporcionais a 2 0.5 k d M (onde k d é o diâmetro cinético e M a massa molar). Um comportamento de permeação distinto observou-se com a membrana nº 5 de AM-3. As permeâncias registadas a temperatura programada eram aproximadamente constantes para o N2, CO2 e O2, enquanto com o H2 cresciam significativamente. Conjuntamente elas evidenciam a ocorrência de macro, meso e microdefeitos intercristalinos. O transporte gasoso activado através dos microporos compensa o impacto diminuidor dos meso e macroporos. Ao contrário do N2, CO2 e O2, o pequeno diâmetro do hidrogénio torna-lhe possível permear através dos microporos intracristalinos, o que lhe adiciona um mecanismo de transferência responsável por esse crescimento. No que respeita à difusão superficial, o sistema CO2/ZSM-5 pode ser tomado como um exemplo paradigmático. Uma vez que este zeólito adsorve o CO2, as permeâncias diminuem com o crescimento de ΔP , em virtude de as concentrações no sólido aumentarem de forma não linear e tenderem para a saturação. Os resultados contrastantes obtidos com azoto realçam ainda mais o mecanismo superficial, pois o N2 não é adsorvido e as permeâncias medidas são constantes. Globalmente, as selectividades ideais calculadas ( α* ) variam de cerca de 1 a 4.2. Este parâmetro foi também utilizado para discriminar as melhores membranas, uma vez que baixos valores de α* denotam o escoamento viscoso não-selectivo típico de macrodefeitos. Por exemplo, o H2/CO2 na membrana nº 3 de AM-3 apresentou α* = 3.6 − 4.2 para 40–120ºC, enquanto que na membrana nº 5 de AM-3 originou α* = 2.6 − 3.1. Estes resultados corroboraram as observações anteriores, segundo as quais a membrana nº 5 era melhor do que a nº 3. Alguns ensaios foram realizados com membranas saturadas com água para aumentar a selectividade: as medições mostraram claramente uma melhoria inicial seguida de uma redução consistente de α* com o aumento da temperatura, devido à remoção das moléculas de água responsáveis pela obstrução de alguns poros. Em relação às selectividades reais de misturas contendo hidrogénio, devem ser realizadas mais experiências e a quantificação do hidrogénio deve ser melhorada. No que concerne à modelação, novos factores termodinâmicos de Maxwell- Stefan foram derivados para as isotérmicas mono e multicomponente de Nitta, Langmuir-Freundlich e Toth, tendo sido testadas com dados de equilíbrio e de permeação da literatura. (É importante realçar que só estão publicadas equações para Langmuir e Dual-Site Langmuir de componentes puros e misturas). O procedimento de validação adoptado foi exigente: i) as isotérmicas multicomponente foram previstas a partir das de gás puro; ii) os parâmetros de difusão dos componentes puros foram ajustados a dados de permeação de cada gás; iii) depois, as difusividades cruzadas de Maxwell- Stefan foram estimadas pela relação de Vignes; finalmente, v) as novas equações foram testadas usando-se estes parâmetros, tendo sido capazes de estimar com sucesso fluxos binários. Paralelamente ao enfoque principal do trabalho, derivou-se um novo modelo para permuta iónica em materiais microporosos baseado nas equações de Maxwell-Stefan. Este foi validado com dados experimentais de remoção de Hg2+ e Cd2+ de soluções aquosas usando ETS-4. A sua capacidade preditiva foi também avaliada, sendo possível concluir que se comporta muito bem. Com efeito, conseguiram-se boas previsões com parâmetros optimizados a partir de conjuntos de dados independentes. Este comportamento pode ser atribuído aos princípios físicos sólidos da teoria de Maxwell-Stefan.
Resumo:
Tese de doutoramento, Energia e Ambiente (Energia e Desenvolvimento Sustentável), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
Mangrove swamps are unique inter-tidal wetland ecosystems found in sheltered tropical and subtropical shores.Mangrove sediments can be considered as large reservoirs of amino acids,which exist in several different forms,like free amino acids in the sediment micropores,as amino acids,peptides or proteins bound to clay minerals or as amino acids,peptides or proteins bound to humic colloids.Inorder to assess survival conditions of organisms of mangroves,it is important to understand stability of amino acids in the sediments.The amounts of amino acids present in sediment represent a balance between its synthesis and destruction by microorganisms.Thus amino acid analysis offers more insight into the processes of diagenesis,which changes the nature and characteristics of organic matter deposition and decomposition.
Resumo:
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional- and shear-wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse-echo method. The measurements were made both in vacuum-dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin-impregnated polished thin sections, X-ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional- and shear-wave velocities (V-p and V-s, respectively) decrease with increasing porosity and that V-p decreases approximately twice as fast as V-s. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore-structure-dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot-Gassmann velocity values are greater than the measured velocity values due to the rock-fluid interaction. This is not accounted for in the Biot-Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time-average relationships overestimated the measured velocities even more than the Biot model.
Resumo:
The applicability of BET model for calculation of surface area of activated carbons is checked by using molecular simulations. By calculation of geometric surface areas for the simple model carbon slit-like pore with the increasing width, and by comparison of the obtained values with those for the same systems from the VEGA ZZ package (adsorbate-accessible molecular surface), it is shown that the latter methods provide correct values. For the system where a monolayer inside a pore is created the ASA approach (GCMC, Ar, T = 87 K) underestimates the value of surface area for micropores (especially, where only one layer is observed and/or two layers of adsorbed Ar are formed). Therefore, we propose the modification of this method based on searching the relationship between the pore diameter and the number of layers in a pore. Finally BET; original andmodified ASA; and A, B and C-point surface areas are calculated for a series of virtual porous carbons using simulated Ar adsorption isotherms (GCMC and T = 87 K). The comparison of results shows that the BET method underestimates and not, as it was usually postulated, overestimates the surface areas of microporous carbons.
Resumo:
Using the plausible model of activated carbon proposed by Harris and co-workers and grand canonical Monte Carlo simulations, we study the applicability of standard methods for describing adsorption data on microporous carbons widely used in adsorption science. Two carbon structures are studied, one with a small distribution of micropores in the range up to 1 nm, and the other with micropores covering a wide range of porosity. For both structures, adsorption isotherms of noble gases (from Ne to Xe), carbon tetrachloride and benzene are simulated. The data obtained are considered in terms of Dubinin-Radushkevich plots. Moreover, for benzene and carbon tetrachloride the temperature invariance of the characteristic curve is also studied. We show that using simulated data some empirical relationships obtained from experiment can be successfully recovered. Next we test the applicability of Dubinin's related models including the Dubinin-Izotova, Dubinin-Radushkevich-Stoeckli, and Jaroniec-Choma equations. The results obtained demonstrate the limits and applications of the models studied in the field of carbon porosity characterization.
Resumo:
By using simulation methods, we studied the adsorption of binary CO2-CH4 mixtures on various CH4 preadsorbed carbonaceous materials (e.g., triply periodic carbon minimal surfaces, slit-shaped carbon micropores, and Harris's virtual porous carbons) at 293 K. Regardless of the different micropore geometry, two-stage mechanism of CH4 displacement from carbon nanospaces by coadsorbed CO2 has been proposed. In the first stage, the coadsorbed CO2 molecules induced the enhancement of CH4 adsorbed amount. In the second stage, the stronger affinity of CO2 to flat/curved graphitic surfaces as well as CO2-CO2 interactions cause the displacement of CH4 molecules from carbonaceous materials. The operating conditions of CO2-induced cleaning of the adsorbed phase from CH4 mixture component strongly depend on the size of the carbon micropores, but, in general, the enhanced adsorption field in narrow carbon ultramicropores facilitates the nonreactive displacement of CH4 by coadsorbed CO2. This is because in narrow carbon ultramicropores the equilibrium CO2/CH4 selectivity (i.e., preferential adsorption toward CO2) increased significantly. The adsorption field in wider micropores (i.e., the overall surface energy) for both CO2 and CH4 is very similar, which decreases the preferential CO2 adsorption. This suppresses the displacement of CH4 by coadsorbed CO2 and assists further adsorption of CH4 from the bulk mixture (i.e., CO2/CH4 mixing in adsorbed phase).
Resumo:
A catalyst of great interest to the scientific community tries to unite the structure of ordered pore diameter from mesoporous materials with the properties of stability and acid activity to microporous zeolites. Thus a large number of materials was developed in the past decades, which although being reported as zeolites intrinsically they fail to comply with some relevant characteristics to zeolites, and recently were named zeolitic materials of high accessibility. Among the various synthesis strategies employed, the present research approaches the synthesis methods of crystallization of silanized protozeolitic units and the method of protozeolitic units molded around surfactant micelles, in order for get materials defined as hierarchical zeolites and micro-mesoporous hybrid materials, respectively. As goal BEA/MCM-41 hybrid catalysts with bimodal pore structure formed by nuclei of zeolite Beta and cationic surfactant cetyltrimethylammonium were developed. As also was successfully synthesized the hierarchical Beta zeolite having a secondary porosity, in addition to the typical and uniform zeolite micropores. Both catalysts were applied in reactions of catalytic cracking of high density polyethylene (HDPE), to evaluate its properties in catalytic activity, aiming at the recycling of waste plastics to obtain high value-added raw materials and fuels. The BEA/MCM-41 hybrid materials with 0 days of pre-crystallization did not show enough properties for use in catalytic cracking reactions, but they showed superior catalytic properties compared to those ordered mesoporous materials of Al-MCM-41 type. The structure of Beta zeolite with hierarchical porosity leads the accessibility of HDPE bulky molecules to active centers, due to high external area. And provides higher conversion to hydrocarbons in the gasoline range, especially olefins which have great interest in the petrochemical industry
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)