82 resultados para Microcavity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcavity organic light-emitting diodes having a top metal mirror and a bottom dielectric mirror, which was distributed Bragg reflectors (DBR) fabricated by using TiO2-SiO2 alternative dielectric multilayer with a central stop-band and two sub-stop-bands, were fabricated. In the devices, the active layers consisted of a hole-transporting layer N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) and an electron- transporting/emitting layer tris(8-hydroxy-quinoline) aluminum (Alq(3)). The relationship of the electroluminescent (EL) spectrum and efficiency with the thickness of the active layer and metal layer was studied. It was found that the EL emissive color did not strongly depend on the thickness of the organic layer and metal layer, which was attributed to the excellent photon confinement role of the narrow stop-band of the used dielectric mirror. Thus, high efficiency microcavity organic light-emitting diodes were achieved, and the peak wavelength and color purity were not obviously changed, via optimizing the thickness of organic layer and metal electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate high efficiency red organic light-emitting diodes (OLEDs) based on a planar microcavity comprised of a dielectric mirror and a metal Mirror. The microcavity devices emitted red light at a peak wavelength of 610 nm with a full width at half maximum (FWHM) of 25 nm in the forward direction, and an enhancement of about 1.3 factor in electroluminescent (EL) efficiency has been experimentally achieved with respect to the conventional noncavity devices. For microcavity devices with the structure of distributed Bragg reflectors (DBR)/indium-tin-oxide(ITO)/V2O5/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine(NPB)/4-(dicy-anome-thylene)-2-t-butyl-6(1,1,7,7-tetrame-thyljulolidyl-9-enyl)-4H-pyran(DCJTB):tris(8-hydroxyquinoline) aluminium (Alq(3))/Alq(3)/LiF/Al, the maximum brightness arrived at 37000 cd/m(2) at a current density of 460.0 mA/cm(2), and the current efficiency and power efficiency reach 13.7 cd/A at a current density of 0.23 mA/cm(2) and 13.3 lm/W respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic white-light-emitting devices ( OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage ( CIE) chromaticity coordinates changed from ( 0.29, 0.37) at 0 degrees to ( 0.31, 0.33) at 40 degrees. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m(-2) at a current density of 200 mA cm(-2), and the maximum current efficiency and power efficiency are 1.6 cd A(-1) at a current density of 12 mA cm(-2) and 0.41 1m W-1 at a current density of 1.6 mA cm(-2), which are over 1.6 times higher than that of a noncavity OLED.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface emitting microcavity was formed by sandwiching a polymer film containing PVK, Alq(3) and DCM between a distributed Bragg reflector (DBR) with a reflectivity of 99% and a silver film (300 nm). The lasing phenomenon was observed in DCM-doped PVK microcavity. The full width at half maximum (FWHM) was 0.6 nm with the peak wavelength at 603 nm. The threshold energy for lasing was estimated to be about 2.5 mu J per pulse. (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microcavity is sandwiched between a quarterwavelength distributed Bragg reflector(DBR) and a metal Ag reflective mirror. A single layer of a Tris(8-quinolinolato)aluminum (Alq) film was used as the light-emitting layer. The photoluminescent properties of the optical microcavity and that of the Alq film were studied at the same excitation condition. Compared with the Alq film,the significantly narrowed spectral emission linewidth from 90 nm to 10 nm was observed, the PL emission intensity of the microcavity at the resonant mode is enhanced by the order of 1. The spectral narrowing and intensity enhancement of the microcavity is attributed to the microcavity effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface emitting microcavity was formed by sandwiching a polymer film containing poly(N-vinyleabzole) (PVK). 8-hydroxyquinoline aluminium (Alq(3)) and 4-(Dicyanome thylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-Pyran(DCM) between a distributed Bragg reflector (DBR) with a reflectivity of 99% and a silver film. The sample was optically pumped with 250 ps pulses at 2 Hz repetition rate by a 355 nm line of the third harmonic of a mode-lock Nd:YAG laser. The lasing phenomenon was observed in DCM-doped PVK microcavity. The full width at half maximum (FWHM) was 3 nm with the peak wavelength at 602 nm. The threshold energy for lasing was estimated to be about 3 mu J. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spontaneous emission properties of a single layer organic film in plane optical microcavities were studied. Optical microcavity was formed by a Tris(8-quinolinolato) aluminium (Alq) film sandwiched between a distributed Bragg reflector (DBR) and a Ag metallic reflector. Two kinds of microcavities were devised by using a different DBR structure. Compared with a Alq film, significantly spectral narrowing and intensity enhancement was observed in the two microcavities, which is attributed to the microcavity effect. The spectra characteristics of the two microcavities showed that the structure of DBR has much influence on the emission properties of a microcavity. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiation loss in the escaping light cone with a two-dimensional (2D) photonic crystal slab microcavity can be suppressed by means of cladding the low-Q slab microcavity by three-dimensional woodpile photonic crystals with the complete bandgap when the resonance frequency is located inside the complete bandgap. It is confirmed that the hybrid microcavity based on a low-Q, single-defect photonic crystal slab microcavity shows improvement of the Q factor without affecting the mode volume and modal frequency. Whereas 2D slab microcavities exhibit Q saturation with an increase in the number of layers, for the analyzed hybrid microcavities with a small gap between the slab and woodpiles, the Q factor does not saturate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the optically induced coupling between spins mediated by polaritons in a planar microcavity. In the strong-coupling regime, the vacuum Rabi splitting introduces anisotropies in the spin coupling. Moreover, due to their photonlike mass, polaritons provide an extremely long spin coupling range. This suggests the realization of two-qubit all-optical quantum operations within tens of picoseconds with spins localized as far as hundreds of nanometers apart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic microcavity light emitting diodes typically exhibit a blue shift of the emitting wavelength with increasing viewing angle. While the wavelength shift can be reduced with the appropriate choice of organic materials and metal mirrors, for further reduction of the emission wavelength shift it is necessary to consider a mirror whose phase shift can partly compensate the effect of the change of optical path within the cavity. In this work, we used a genetic algorithm (GA) to design an asymmetric Bragg mirror in order to minimize the emission wavelength shift with viewing angle. Based on simulation results, the use of asymmetric Bragg mirrors represents a promising way to reduce the emission wavelength shift. Detailed comparison between GA optimized and conventional Bragg mirrors in terms of resonant wavelength dependence on the viewing angle, spectral narrowing, and brightness enhancement is given. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new design of an optical resonator for generation of single-photon pulses is proposed. The resonator is made of a cylindrical or spherical piece of a polymer squeezed between two flat dielectric mirrors. The mode characteristics of this resonator are calculated numerically. The numerical analysis is backed by a physical explanation. The decay time and the mode volume of the fundamental mode are sufficient for achieving more than 96% probability of generating a single-photon in a single-mode. The corresponding requirement for the reflectivity of the mirrors (similar to 99.9%) and the losses in the polymer ( 100 dB/m) are quite modest. The resonator is suitable for single-photon generation based on optical pumping of a single quantum system such as an organic molecule, a diamond nanocrystal, or a semiconductor quantum dot if they are imbedded in the polymer. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We optimized the emission efficiency from a microcavity OLEDs consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq(3)) as emitting and electron transporting layer. LiF/Al was considered as a cathode, while metallic Ag anode was used. TiO2 and Al2O3 layers were stacked on top of the cathode to alter the properties of the top mirror. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that for certain TiO2 and Al2O3 layer thicknesses, light output is enhanced as a result of the increase in both the reflectance and transmittance of the top mirror. Once the optimum structure has been determined, the microcavity OLED devices can be fabricated and characterized, and comparisons between experiments and theory can be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the effect of the replacement of the conventional ITO anode with the semitransparent metallic material on the performance of microcavity OLEDs. We performed comprehensive simulations of the emission from microcavity OLEDs consisting of widely used organic materials, N,N′-di(naphthalene-1- yl)-N,N′-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer. Silver and LiF/Al were considered as a cathode, while metallic (Au and Ag) anode was used and simulations were performed on devices with both the metallic and conventional ITO anode. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that the metallic anode enhances light output and that optimum emission from a microcavity OLED is achieved when the position of the recombination region is aligned with the antinode of the standing wave inside the cavity. The microcavity OLED devices with Ag/Ag and Ag/Au mirrors were fabricated and characterized. The experimental results have been compared to the simulations and the influence of the different anode, emission region width and position on the performance of microcavity OLEDs was discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gas flows in micro-electro-mechanical systems possess relatively large Knudsen number and usually belong to the slip flow and transitional flow regimes. Recently the lattice Boltzmann method (LBM) was proposed by Nie et al. in Journal of Statistical Physics, vol. 107, pp. 279-289, in 2002 to simulate the microchannel and microcavity flows in the transitional flow regime. The present article intends to test the feasibility of doing so. The results of using the lattice Boltzmann method and the direct simulation Monte Carlo method show good agreement between them for small Kn (Kn = 0.0194), poor agreement for Kn = 0.194, and large deviation for Kn = 0.388 in simulating microchannel flows. This suggests that the present version of the lattice Boltzmann method is not feasible to simulate the transitional channel flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1550 nm AlGaInAs/InP long rectangle resonator lasers with three sides surrounded by SiO2 and p electrode layers are fabricated by planar technology, and room-temperature continuous-wave lasing is realized for a laser with a length of 53 mu m and a width of 2 mu m. Multiple peaks with wavelength intervals of Fabry-Perot mode intervals and mode Q factors of about 400 and a lasing mode with a Q factor over 8000 are observed from the lasing spectrum at threshold current. The numerical results of the FDTD simulation indicate that the lasing mode may be a whispering-gallery mode, which is a coupled mode of two high-order transverse modes of the waveguide.