123 resultados para Metallographic
Resumo:
This paper will present a failure analysis of a chain component, manufactured with AISI 1045 steel and used for sugarcane transport. During the fabrication process, this component is submitted to induction hardening, just on one surface, before the galvanizing process. The occurrence of surface cracks, during storage, disables the usage of these components. Chemical and metallographic analyses, tensile, fracture toughness, and hardness tests, and fractography were conducted in order to determine the causes of failure. The steel chemical composition was in accordance with AISI 1045. The metallographic analyses and fractography did not exhibit the presence of zinc into the cracks; this is an indication that the cracks occurred after the galvanizing process. Tensile and fracture toughness test results are as expected. The crack surface and the fracture toughness specimen surfaces showed two different fracture micromechanisms: dimples and intergranular. The delayed fracture associated with the predominance of intergranular fracture micromechanism at the induction hardened layer and the high hardness level is a clear indication of the hydrogen embrittlement. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: The aim of this study was to carry out an in vivo assessment of bone ingrowth in two different types of porous titanium -the first being completely porous, and the second with a porous surface and dense nucleus, manufactured by powder metallurgy- and to evaluate their mechanical properties. Study design: Ten scaffolds from each group were submitted to metallographic analysis and compression tests. Next, two scaffolds of each type were inserted into 14 rabbits, which were sacrificed 8 weeks after surgery. The samples were submitted for histological examination. Results: Metallographic analysis revealed interconnected pores, and the average interconnected pore diameter was about 360 mm, with 36% total porosity. The totally porous titanium samples and the titanium samples with porous surface and dense nucleus showed an average compressive strength of 16.19 MPa and 69.27 MPa, respectively. After 8 weeks, the animals showed bone ingrowth, even into the most internal pores. Conclusions: The pore morphology was effective in permitting bone ingrowth in both groups. Titanium scaffolds with a porous surface and dense nucleus showed the best mechanical properties and most adequate interface.
Resumo:
Purpose: This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test.Materials and Methods: Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm(2) flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37 degrees C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm(2) (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tu key's test.Results: Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p <= 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF).Conclusion: Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.
Resumo:
Metallographic studies by scanning electron microscopy and energy dispersive spectroscopy carried out for two types of dental amalgam showing a porous multiphase material. Surface analysis shows that the structure of the Dispersalloy amalgam consists of gamma-Ag3Sn, gamma(1)-Ag2Hg3, eta'-Cu6Sn5, epsilon-Cu3Sn and eutectic Ag-Cu phases. while Velvalloy amalgam consists mainly of gamma, gamma(1) and gamma(2)-Sn7-8Hg phases. The latter phase presents an uniform distribution often associated with voids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Welding in the dentistry has been used for great part of the specialized dentist-surgeons in the implants area to solve prosthesis supported by implant adaptation problems. The development of new equipments Laser and TIG allowed a larger use of these processes in the prosthesis production. In this work, it was studied welded joints made by Laser and TIG, using commercial purity titanium, cpTi, applied in prosthesis supported by implants. The weld characterizations were carried out by light microscopy, EDS_elementary mapping, microhardness and tensile test. Through metallographic characterization, the weld bead presented a martensitic microstructure in the Laser welding process, originated from shear provoked by deformations in the lattice. This caused structural changes of the transformed area, which determines a fine plate-like morphology. In the weld bead from TIG, besides presenting higher hardness, was observed formation of Widmansttaten structure, which is characteristic of a geometric model, resulted of new phase formation along of the crystallographic plans. The martensitic structure is more refined than Widmansttaten structure, due to the high-speed cooling (10(3)degrees C/s) imposed by the Laser process.
Resumo:
Metallographic studies carried out for Tytin-Plus and Dispersalloy amalgams show a porous multiphase material, whose surface phases are: gamma-(Ag3Sn), gamma(1)-(Ag2Hg3), eta'-(Cu6Sn5) and epsilon-(Cu3Sn). Additionally, Dispersalloy is present in the Ag-Cu eutectic. The application of surface analysis by SEM reveal a heterogeneous distribution of the above mentioned phases. Microstructures consisting of colonies or clusters were not observed. The corrosion testing of these materials was done in 0.9% NaCl aerated solution at 25 degrees C using potentiodynamic polarization curves and ac impedance measurements. The corrosion process in these multiphase systems can be interpreted as the sum of more than one electrodissolution process and the posterior formation of corrosion films. on each electrode, the corrosion film is formed by different mechanisms. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this study we analyzed possible damages that vaporization from laser radiation could cause to implant material. Fifteen standard titanium implants, measuring 3.75 mm in diameter by 7 mm in length, were placed into the upper and lower jaws of three dogs according to Branemark's system. After osseointegration, all implants were exposed. In group I (control) conventional exposure with a punch was used; in group II, a CO2 laser with 2 W (power density: 256 W/cm(2); fluency: 0.077 J/cm(2), and a pulse mode of 0.30 ms) was used, and in group III 4 W (power density: 512 W/cm(2), fluency: 0.154 J/cm(2), and a pulse mode of 0.30 ms) was used. After vaporization, the cover screws were removed and sent for metallographic examination. The results showed that cover screws irradiated with 2 and 4 W power caused no superficial or microstructural alteration. The results also showed that the prescribed power densities, fluencies, and the use of the pulse mode were suitable for exposing implants without damage to tissue or implant material. (C) 2002 Laser Institute of America.
Resumo:
Metallographic techniques and digital image processing have been used to investigate heat-treated Ti-6Al-4V pitting corrosion, often used as aircraft components. LM and SEM metallography of 'as received', annealed (heating up to 800 degreesC/30 min and cooling furnace) and aged (heating up to 900 degreesC/30 min, quenching in water, heating up to 540 degreesC/240 min and again water-quenched) microstructures reveal pitting sites at primary and secondary alpha/beta interfaces. Microstructural arrangements influence and corrosive environment association on pit morphology could be demonstrated by digital image analysis and results statistical treatment. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work, the chemical structure, the microstructure and the surface morphology of two non-ferrous materials used in dental implants (Ti-6Al-4V and Co-Cr-Mo) were studied. This was done by chemical analysis, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), and strength measurements (HV). Metallographic studies reveal that titanium alloy surface present a fine granular binary phase structure, while cobalt alloy present cast dendrite structures with an intense precipitation of carbides. To correlate the macro and microstructure with the mechanical behavior of the material, microhardness measurements were performed. Using the Vickers hardening method, the Ti-6Al-4V alloy yielded strength mean values smaller than the Co-Cr-Mo alloy. Their values are associated to the chemical composition and to the microstructural distribution of these materials. The Ti-6Al-4V alloy presents hardness similar to dental enamel, which suggests better performance as dental implant.
Resumo:
The objective of the study presented in this article was to analyze the influence of remelting of two odontological alloys: Dentorium and Steeldent, on the mechanical properties and on the chemical composition. For the two alloys, samples, containing 10% and 50% new alloy, were subjected to tensile test, micrography and chemical analysis. The alloys presented similar mechanical properties, except for the elongation, which presented higher values for the Dentorium 50% new alloy. This is due to the smaller carbides formed in this sample. The remelting itself seems not to be responsible for these differences, but they are probably due to the lack of a good control of the casting process. The micrography showed a dendritic column matrix, with carbides in the interdentric region and inside dendritic grain. In the chemical composition was observed few elements percentage change.
Resumo:
Results are presented on the mechanism of passivation of Co-Cr-Mo biological implant alloys in physiological serum using open circuit potentiometry, potentiodynamic curves, and electrochemical impedance spectroscopy. The potential dependence of impedance data and the analysis of the parameters obtained indicate a progressive diminution of the initial layer thickness and the simultaneous formation of a second higher resistive layer. In more severe conditions than the existent in human body, the metallographic examination of the alloy surface shows localized corrosion in interdendritric regions. Elemental analysis of the surface reveals the presence of higher chromium content in these regions. The presence of chlorine was not detected, which suggested that during preferential attack, soluble species are also formed.
Resumo:
Co3O4 can be used as electrocatalyst for oxygen evolution reaction. The macro and microstructure of the oxide, obtained by compacting and sintering lithium-doped Co3O4 powder in atmosphere of dry air and in conditions of controlled temperature and time was analyzed by metallographic techniques. The porous material was characterized by XRD, SEM and EDS combined techniques. For working temperatures up to 1200°C, the pellet was consituted of particles with varying sizes over a wide range of particle size and, at higher temperatures CoO is formed and polymorphic transformation was observed. The materials were also characterized electrochemically in alkaline media by open circuit potential and potentiodynamic I/E measurements. The results were compared to those previously prepared by others by thermal deposition.
Resumo:
The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures.