996 resultados para Metallic oxides.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a study of the magnetoresistance (MR) of the metallic perovskite oxide LaNiO3-delta as a function of the oxygen stoichiometry delta (delta less than or equal to 0.14), magnetic field (H less than or equal to 6 T) and temperature (1.5 K less than or equal to T less than or equal to 25 K). We find a strong dependence of the nature of the MR on the oxygen stoichiometry. The MR at low temperatures changes from positive to negative as the sample becomes more oxygen deficient (i.e. delta increases). Some of the samples, which are more resistive, show resistivity minima at T-min approximate to 20 K. We find that in these samples the MR is positive for T > T-min and negative for T < T-min. We conclude that in the absence of strong magnetic interaction, the negative MR in these oxides can arise from weak-localization effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented is a thermodynamic feasibility analysis of extracting base metal chlorides fiom low-grade,multimetallic oxide ores using CaClz as a chlorinating agent in the presence of SOz undoz. The oxides react to form corresponding chlorides, while CaClz is converted to CaS04. The Ellingham diagram is usedfor comparing the standard Gibbs' fiee energy chanlpef or the su(fation-chlorinationr eaction of a large number of oxides. Except for alumina, silica and chromia, most of the other metal oxides will be converted to their respective chlorides. The volatile chlorides can be condensed, and the chlorides present in the condensed state can be leached. A process is proposed that uses a nontoxic chlorinating agent and gives an eficient sepurutiort cftlte metallic vuluesfr.om the garlgue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox) G o is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple microstructural rationale for successful anodization of metallic films into ordered oxide nanostructures has been identified. It applies to three of the most commonly studied systems, Zr, Ti and Al films and can be extended to other such oxides. A dense Zone T or II microstructure, in sputtered films, is the most critical ingredient. While T-substrate > 0.3T(melting) Ching is the simplest route, pressure and plasma heating can also be exploited. Such microstructures are also associated with a unique growth stress signature. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two systems of La2-xSrxCuO4+/-lambda and La2-xThxCuO4+/-lambda, mixed oxides with K2NiF4 structure were synthesized. The compositions and structures of the catalysts were characterized by means of XRD, XPS, chemical analysis and so on. The catalytic behavior for the direct decomposition of NO has been investigated. The results show that the catalytic activity is closely related to the oxygen vacancy and lower valence metallic ion in the direct decomposition of NO. The presence of oxygen vacancy is necessary for mixed oxide to have steady activity in NO decomposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By combining density functional theory calculation and microkinetic analysis, NO oxidation on the platinum group metal oxides (PtO(2), IrO(2), OsO(2)) is investigated, aiming at shedding light on the activities of metal oxides and exploring the activity variations of metal oxides compared to their corresponding metals. A microkinetic model, taking into account the possible low diffusion of surface species on metal oxide surfaces, is proposed for NO oxidation. The resultant turnover frequencies of NO oxidation show that under the typical experimental condition, T = 600 K, p(O2) = 0.1 atm, p(NO) = 3 x 10(-4) atm, p(NO2) = 1.7 x 10(-4) atm; (i) IrO(2)(110) exhibits higher activity than PtO(2)(110) and OsO(2)(110), and (ii) compared to the corresponding metallic Pt, Ir, and Os, the activity of PtO(2) to catalyze NO oxidation is lower, but interestingly IrO(2) and OsO(2) exhibit higher activities. The reasons for the activity differences between the metals and oxides are addressed. Moreover, other possible reaction pathways of NO oxidation on PtO(2)(110), involving O(2) molecule (NO + O(2) -> OONO) and lattice bridge-O(2c), are also found to give low activities. The origin of the Pt catalyst deactivation is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport and magnetotransport properties of the metallic and ferromagnetic SrRuO3 (SRO) and the metallic and paramagnetic LaNiO3 (LNO) epitaxial thin films have been investigated in fields up to 55 T at temperatures down to 1.8 K . At low temperatures both samples display a well-defined resistivity minimum. We argue that this behavior is due to the increasing relevance of quantum corrections to the conductivity (QCC) as temperature is lowered; this effect being particularly relevant in these oxides due to their short mean free path. However, it is not straightforward to discriminate between contributions of weak localization and renormalization of electron-electron interactions to the QCC through temperature dependence alone. We have taken advantage of the distinct effect of a magnetic field on both mechanisms to demonstrate that in ferromagnetic SRO the weak-localization contribution is suppressed by the large internal field leaving only renormalized electron-electron interactions, whereas in the nonmagnetic LNO thin films the weak-localization term is relevant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semiconductor physics has developed significantly in the field of re- search and industry in the past few decades due to it’s numerous practical applications. One of the relevant fields of current interest in material science is the fundamental aspects and applications of semi- conducting transparent thin films. Transparent conductors show the properties of transparency and conductivity simultaneously. As far as the band structure is concerned, the combination of the these two properties in the same material is contradictory. Generally a trans- parent material is an insulator having completely filled valence and empty conduction bands. Metallic conductivity come out when the Fermi level lies within a band with a large density of states to provide high carrier concentration. Effective transparent conductors must nec- essarily represent a compromise between a better transmission within the visible spectral range and a controlled but useful electrical con- ductivity [1–6]. Generally oxides like In2O3, SnO2, ZnO, CdO etc, show such a combination. These materials without any doping are insulators with optical band gap of about 3 eV. To become a trans- parent conductor, these materials must be degenerately doped to lift the Fermi level up into the conduction band. Degenerate doping pro- vides high mobility of extra carriers and low optical absorption. The increase in conductivity involves an increase in either carrier concen- tration or mobility. Increase in carrier concentration will enhance the absorption in the visible region while increase in mobility has no re- verse effect on optical properties. Therefore the focus of research for new transparent conducting oxide (TCO) materials is on developing materials with higher carrier mobilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behavior of metallic chromium in aqueous solutions containing chloride ions at different pH was studied by means of open-circuit potential vs. time measurements, cyclic voltammetry and electrochemical impedance spectroscopy. The composition of the surface oxides was analyzed by XPS. For solutions with pH<3 the formation of a passive layer occurs via a dissolution/precipitation process while for pH>3 the mechanism changes. XPS analysis revealed that Cr2O3 basically constitutes the passive layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a simple model for the doped compound Nd2-yCevCuO4, in order to explain some recent experimental results on the latter. Within a Hartree-Fock context, we start from an impurity Anderson-like model and consider the magnetic splitting of the Nd-4f ground state Kramers doublet due to exchange interactions with the ordered Cu moments. Our results are in very good agreement with the experimental data, yielding a Schottky anomaly peak for the specific heat that reduces its amplitude, broadens and shifts to lower temperatures, upon Ce doping. For overdoped compounds at low temperatures, the specific heat behaves linearly and the magnetic susceptibility is constant. A smooth transition from this Fermi liquid-like behavior occurs as temperature is increased and, at high temperatures, the susceptibility exhibits a Curie-like behavior. Finally, we discuss some improvements our model is amenable to incorporate, (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Photocatalyst ceramic powder that presented high photoactivity based on TiO2 modified with 25% molar of SnO2 and up to 5% molar of Ag2O was obtained in the present work. The aforementioned ceramic powder was obtained using all commercial oxides as well as the oxides mixture technique. The powders were ground in high energy mill for one hour with subsequent thermal treatment at 400°C for four hours. They were, furthermore, characterized using surface area of around 6m2/g, where the X-Ray diffraction results provided evidence for the presence of anatase and rutile phases, known to be typical characteristics of both the TiO2 and SnO2 used. During the thermal treatment, Ag2O was reduced to metallic silver. The photodegradation rehearsals were carried out using a 0.01 mmol/L Rhodamine B solution in a 100mg/L photocatalyst suspension in a 500ml beaker, which was irradiated with 4W germicide Ultraviolet light of 254nm. In addition, samples were removed after duration of about 10 minutes to an hour, where they were analyzed thoroughly in UV-vis spectrophotometer. The analysis of the results indicated that for the compositions up to 2.5% molar of Ag2O, the photoactivity was found to be greater than that of Degussa P25 photocatalyst powder, and as such it was then used as a reference. Taking into account 90% degradation of Rhodamine B, a duration period of 11 minutes was obtained for the developed photocatalyst powder compared to the 38 minutes observed for the Degussa P25. FEG-SEM micrographies enabled the verification of the morphology as well as the interaction of the oxide particles with the metallic silver, which led us to propose a model for the increase in photoactivity observed in the photocatalyst powder under investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we report on the first application of high-pressure XPS (HP-XPS) to the surface catalyzed selective oxidation of a hydrocarbon over palladium, wherein the reactivity of metal and oxide surfaces in directing the oxidative dehydrogenation of crotyl alcohol (CrOH) to crotonaldehyde (CrHCO) is evaluated. Crotonaldehyde formation is disfavored over Pd(111) under all reaction conditions, with only crotyl alcohol decomposition observed. In contrast, 2D Pd5O4 and 3D PdO overlayers are able to selectively oxidize crotyl alcohol (1 mTorr) to crotonaldehyde in the presence of co-fed oxygen (140 mTorr) at temperatures as low as 40 °C. However, 2D Pd5O4 ultrathin films are unstable toward reduction by the alcohol at ambient temperature, whereas the 3D PdO oxide is able to sustain catalytic crotonaldehyde production even up to 150 °C. Co-fed oxygen is essential to stabilize palladium surface oxides toward in situ reduction by crotyl alcohol, with stability increasing with oxide film dimensionality.