842 resultados para Mathematical operators
Resumo:
The present work deals with the A study of morphological opertors with applications. Morphology is now a.necessary tool for engineers involved with imaging applications. Morphological operations have been viewed as filters the properties of which have been well studied (Heijmans, 1994). Another well-known class of non-linear filters is the class of rank order filters (Pitas and Venetsanopoulos, 1990). Soft morphological filters are a combination of morphological and weighted rank order filters (Koskinen, et al., 1991, Kuosmanen and Astola, 1995). They have been introduced to improve the behaviour of traditional morphological filters in noisy environments. The idea was to slightly relax the typical morphological definitions in such a way that a degree of robustness is achieved, while most of the desirable properties of typical morphological operations are maintained. Soft morphological filters are less sensitive to additive noise and to small variations in object shape than typical morphological filters. They can remove positive and negative impulse noise, preserving at the same time small details in images. Currently, Mathematical Morphology allows processing images to enhance fuzzy areas, segment objects, detect edges and analyze structures. The techniques developed for binary images are a major step forward in the application of this theory to gray level images. One of these techniques is based on fuzzy logic and on the theory of fuzzy sets.Fuzzy sets have proved to be strongly advantageous when representing in accuracies, not only regarding the spatial localization of objects in an image but also the membership of a certain pixel to a given class. Such inaccuracies are inherent to real images either because of the presence of indefinite limits between the structures or objects to be segmented within the image due to noisy acquisitions or directly because they are inherent to the image formation methods.
Resumo:
The focus of this paper is to develop computationally efficient mathematical morphology operators on hypergraphs. To this aim we consider lattice structures on hypergraphs on which we build morphological operators. We develop a pair of dual adjunctions between the vertex set and the hyperedge set of a hypergraph , by defining a vertex-hyperedge correspondence. This allows us to recover the classical notion of a dilation/erosion of a subset of vertices and to extend it to subhypergraphs of . This paper also studies the concept of morphological adjunction on hypergraphs for which both the input and the output are hypergraphs
Resumo:
In the first half of this memoir we explore the interrelationships between the abstract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch and Silbermann (2004) and Lindner (2006)) and the concepts and results of the generalised collectively compact operator theory introduced by Chandler-Wilde and Zhang (2002). We build up to results obtained by applying this generalised collectively compact operator theory to the set of limit operators of an operator (its operator spectrum). In the second half of this memoir we study bounded linear operators on the generalised sequence space , where and is some complex Banach space. We make what seems to be a more complete study than hitherto of the connections between Fredholmness, invertibility, invertibility at infinity, and invertibility or injectivity of the set of limit operators, with some emphasis on the case when the operator is a locally compact perturbation of the identity. Especially, we obtain stronger results than previously known for the subtle limiting cases of and . Our tools in this study are the results from the first half of the memoir and an exploitation of the partial duality between and and its implications for bounded linear operators which are also continuous with respect to the weaker topology (the strict topology) introduced in the first half of the memoir. Results in this second half of the memoir include a new proof that injectivity of all limit operators (the classic Favard condition) implies invertibility for a general class of almost periodic operators, and characterisations of invertibility at infinity and Fredholmness for operators in the so-called Wiener algebra. In two final chapters our results are illustrated by and applied to concrete examples. Firstly, we study the spectra and essential spectra of discrete Schrödinger operators (both self-adjoint and non-self-adjoint), including operators with almost periodic and random potentials. In the final chapter we apply our results to integral operators on .
Resumo:
In this paper we extend the well-known Leinfelder–Simader theorem on the essential selfadjointness of singular Schrödinger operators to arbitrary complete Riemannian manifolds. This improves some earlier results of Shubin, Milatovic and others.
Resumo:
We study the boundedness and compactness of Toeplitz operators Ta on Bergman spaces , 1 < p < ∞. The novelty is that we allow distributional symbols. It turns out that the belonging of the symbol to a weighted Sobolev space of negative order is sufficient for the boundedness of Ta. We show the natural relation of the hyperbolic geometry of the disc and the order of the distribution. A corresponding sufficient condition for the compactness is also derived.
Resumo:
In this paper we characterize the Schatten p class membership of Toeplitz operators with positive measure symbols acting on generalized Fock spaces for the full range p>0.
Resumo:
The design of binary morphological operators that are translation-invariant and locally defined by a finite neighborhood window corresponds to the problem of designing Boolean functions. As in any supervised classification problem, morphological operators designed from a training sample also suffer from overfitting. Large neighborhood tends to lead to performance degradation of the designed operator. This work proposes a multilevel design approach to deal with the issue of designing large neighborhood-based operators. The main idea is inspired by stacked generalization (a multilevel classifier design approach) and consists of, at each training level, combining the outcomes of the previous level operators. The final operator is a multilevel operator that ultimately depends on a larger neighborhood than of the individual operators that have been combined. Experimental results show that two-level operators obtained by combining operators designed on subwindows of a large window consistently outperform the single-level operators designed on the full window. They also show that iterating two-level operators is an effective multilevel approach to obtain better results.
Resumo:
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
The symmetry structure of the non-Abelian affine Toda model based on the coset SL(3)/SL(2) circle times U(1) is studied. It is shown that the model possess non-Abelian Noether symmetry closing into a q-deformed SL(2) circle times U(1) algebra. Specific two-vertex soliton solutions are constructed.
Resumo:
Ladder operators can be constructed for all potentials that present the integrability condition known as shape invariance, satisfied by most of the exactly solvable potentials. Using the superalgebra of supersymmetric quantum mechanics, we construct the ladder operators for two exactly solvable potentials that present a subtle hidden shape invariance.