859 resultados para Marfan Syndrome
Resumo:
Microspherophakia is an autosomal-recessive congenital disorder characterized by small spherical lens. It may be isolated or occur as part of a hereditary systemic disorder, such as Marfan syndrome, autosomal dominant and recessive forms of Weill-Marchesani syndrome, autosomal dominant glaucoma-lens ectopia-microspherophakia-stiffness-shortness syndrome, autosomal dominant microspherophakia with hernia, and microspherophakia-metaphyseal dysplasia. The purpose of this study was to map and identify the gene for isolated microspherophakia in two consanguineous Indian families. Using a whole-genome linkage scan in one family, we identified a likely locus for microspherophakia (MSP1) on chromosome 14q24.1-q32.12 between markers D14S588 and D14S1050 in a physical distance of 22.76 Mb. The maximum multi-point lod score was 2.91 between markers D14S1020 and D14S606. The MSP1 candidate region harbors 110 reference genes. DNA sequence analysis of one of the genes, LTBP2, detected a homozygous duplication (insertion) mutation, c.5446dupC, in the last exon (exon 36) in affected family members. This homozygous mutation is predicted to elongate the LTBP2 protein by replacing the last 6 amino acids with 27 novel amino acids. Microspherophakia in the second family did not map to this locus, suggesting genetic heterogeneity. The present study suggests a role for LTBP2 in the structural stability of ciliary zonules, and growth and development of lens.
Resumo:
Patients with spontaneous lens dislocation and glaucoma can be challenging to manage. We present a forty-six year old Caucasian lady who was referred with bilateral high intraocular pressure, and was subsequently diagnosed with glaucoma in association with lens dislocation and Marfan syndrome. Baerveldt glaucoma drainage device tubes were inserted in both eyes due to poor response to medical therapy. However, this was complicated by recurrent vitreous occlusion of both glaucoma drainage tubes requiring further multiple surgical interventions. There have not been any further recurrences of vitreous incarceration or posterior segment complications since, but the patient remains under close follow-up. © 2010 Ang et al; licensee BioMed Central Ltd.
Resumo:
Aortic dilatation/dissection (AD) can occur spontaneously or in association with genetic syndromes, such as Marfan syndrome (MFS; caused by FBN1 mutations), MFS type 2 and Loeys-Dietz syndrome (associated with TGFBR1/TGFBR2 mutations), and Ehlers-Danlos syndrome (EDS) vascular type (caused by COL3A1 mutations). Although mutations in FBN1 and TGFBR1/TGFBR2 account for the majority of AD cases referred to us for molecular genetic testing, we have obtained negative results for these genes in a large cohort of AD patients, suggesting the involvement of additional genes or acquired factors. In this study we assessed the effect of COL3A1 deletions/duplications in this cohort. Multiplex ligation-dependent probe amplification (MLPA) analysis of 100 unrelated patients identified one hemizygous deletion of the entire COL3A1 gene. Subsequent microarray analyses and sequencing of breakpoints revealed the deletion size of 3,408,306 bp at 2q32.1q32.3. This deletion affects not only COL3A1 but also 21 other known genes (GULP1, DIRC1, COL5A2, WDR75, SLC40A1, ASNSD1, ANKAR, OSGEPL1, ORMDL1, LOC100129592, PMS1, MSTN, C2orf88, HIBCH, INPP1, MFSD6, TMEM194B, NAB1, GLS, STAT1, and STAT4), mutations in three of which (COL5A2, SLC40A1, and MSTN) have also been associated with an autosomal dominant disorder (EDS classical type, hemochromatosis type 4, and muscle hypertrophy). Physical and laboratory examinations revealed that true haploinsufficiency of COL3A1, COL5A2, and MSTN, but not that of SLC40A1, leads to a clinical phenotype. Our data not only emphasize the impact/role of COL3A1 in AD patients but also extend the molecular etiology of several disorders by providing hitherto unreported evidence for true haploinsufficiency of the underlying gene.
Resumo:
It is not well known if the size of the ascending thoracic aorta at presentation predicts features of presentation, management, and outcomes in patients with acute type B aortic dissection. The International Registry of Acute Aortic Dissection (IRAD) database was queried for all patients with acute type B dissection who had documentation of ascending thoracic aortic size at time of presentation. Patients were categorized according to ascending thoracic aortic diameters ≤4.0, 4.1 to 4.5, and ≥4.6 cm. Four hundred eighteen patients met inclusion criteria; 291 patients (69.6%) were men with a mean age of 63.2 ± 13.5 years. Ascending thoracic aortic diameter ≤4.0 cm was noted in 250 patients (59.8%), 4.1 to 4.5 cm in 105 patients (25.1%), and ≥4.6 cm in 63 patients (15.1%). Patients with an ascending thoracic aortic diameter ≥4.6 cm were more likely to be men (p = 0.01) and have Marfan syndrome (p <0.001) and known bicuspid aortic valve disease (p = 0.003). In patients with an ascending thoracic aorta ≥4.1 cm, there was an increased incidence of surgical intervention (p = 0.013). In those with an ascending thoracic aorta ≥4.6 cm, the root, ascending aorta, arch, and aortic valve were more often involved in surgical repair. Patients with an ascending thoracic aorta ≤4.0 were more likely to have endovascular therapy than those with larger ascending thoracic aortas (p = 0.009). There was no difference in overall mortality or cause of death. In conclusion, ascending thoracic aortic enlargement in patients with acute type B aortic dissection is common. Although its presence does not appear to predict an increased risk of mortality, it is associated with more frequent open surgical intervention that often involves replacement of the proximal aorta. Those with smaller proximal aortas are more likely to receive endovascular therapy.
Resumo:
Aortic aneurysms and aortic dissection represent a significant health risk due to the demographic developments and current life styles. The mortality of ruptured aortic aneurysms is up to 80 % and the prevalence of aneurysms varies depending on the localization (thoracic or abdominal). Most commonly affected is the infrarenal abdominal aorta; however, there is evidence that the prevalence is diminishing but in contrast the incidence of thoracic aortic aneurysms is increasing. Aortic dissection is often fatal and is the most common acute aortic disease but the incidence is presumed to be underestimated. The pathogenesis of aortic aneurysms is manifold and is based on an interplay between degenerative, proteolytic and inflammatory processes. An aortic dissection arises from a tear in the intima which results in a separation of the aortic wall layers with infiltration of bleeding and the danger of aortic rupture. Various genetic disorders of connective tissue promote degeneration of the aortic media, most notably Marfan syndrome. Risk factors for aortic aneurysms and aortic dissection are nicotine abuse, arterial hypertension, age and male gender. Aortic aneurysms initially have an uneventful course and as a consequence are mostly discovered incidentally. The clinical course and symptoms of aortic dissection are very much dependent on the section of the aorta affected and the manifestations are manifold. Acute aortic dissection is in 80 % of cases first manifested as sudden extremely severe pain. The diagnostics and subsequent course control can be achieved by a variety of imaging procedures but the modality of choice is computed tomography.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Resumo:
The Mendelian inheritance of genetic mutations can lead to adult-onset cardiovascular disease. Several genetic loci have been mapped for the familial form of Thoracic Aortic Aneurysms (TAA), and many causal mutations have been identified for this disease. Intracranial Aneurysms (ICA) also show linkage heterogeneity, but no mutations have been identified causing familial ICA alone. Here, we characterized a large family (TAA288) with an autosomal dominant pattern of inherited aneurysms. It is intriguing that female patients predominantly present with ICA and male patients predominantly with TAA in this family. To identify a causal mutation in this family, a genome-wide linkage analysis was previously performed on nine members of this family using the 50k GenChips Hind array from Affymetrix. This analysis eventually identified a single disease-segregating locus, on chromosome 5p15. We build upon this previous analysis in this study, hypothesizing that a genetic mutation inherited in this locus leads to the sex-specific phenotype of TAA and ICA in this family First we refined the boundaries of the 5p15 disease linked locus down to the genomic coordinates 5p15: 3,424,465- 6,312,925 (GRCh37/hg19 Assembly). This locus was named the TAA288 critical interval. Next, we sequenced candidate genes within the TAA288 critical interval. The selection of genes was simplified by the relatively small number of well-characterized genetic elements within the region. Seeking novel or rare disease-segregating variants, we initially observed a single point alteration in the metalloproteinase gene ADAMTS16 fulfilling this criteria. This variant was later classified as a low-frequency population polymorphism (rs72647757), but we continued to explore the potential role of the ADAMTS16 as the cause of disease in TAA288. We observed that fibroblasts cultured from TAA288 patients consistently upregulated the expression of this gene more strongly compared to matched control fibroblasts when treated with the cytokine TGF-β1, though there was some variation in the exact nature of this expression. We also observed evidence that this protein is expressed at elevated levels in aortic aneurysm tissue from patients with mutations in the gene TGFBR2 and Marfan syndrome, shown by immunohistochemical detection of this protein.
Resumo:
OBJECTIVE In a large series of patients with cervical artery dissection (CeAD), a major cause of ischemic stroke in young and middle-aged adults, we aimed to examine frequencies and correlates of family history of CeAD and of inherited connective tissue disorders. METHODS We combined data from 2 large international multicenter cohorts of consecutive patients with CeAD in 23 neurologic departments participating in the CADISP-plus consortium, following a standardized protocol. Frequency of reported family history of CeAD and of inherited connective tissue disorders was assessed. Putative risk factors, baseline features, and 3-month outcome were compared between groups. RESULTS Among 1,934 consecutive patients with CeAD, 20 patients (1.0%, 95% confidence interval: 0.6%-1.5%) from 17 families (0.9%, 0.5%-1.3%) had a family history of CeAD. Family history of CeAD was significantly more frequent in patients with carotid location of the dissection and elevated cholesterol levels. Two patients without a family history of CeAD had vascular Ehlers-Danlos syndrome with a mutation in COL3A1. This diagnosis was suspected in 2 additional patients, but COL3A1 sequencing was negative. Two patients were diagnosed with classic and hypermobile Ehlers-Danlos syndrome, one patient with Marfan syndrome, and one with osteogenesis imperfecta, based on clinical criteria only. CONCLUSIONS In this largest series of patients with CeAD to date, family history of symptomatic CeAD was rare and inherited connective tissue disorders seemed exceptional. This finding supports the notion that CeAD is a multifactorial disease in the vast majority of cases.
Resumo:
Thoracic aortic aneurysms leading to aortic dissections (TAAD) are a major cause of morbidity and mortality in the United States. TAAD is a complication of some known genetic disorders, such as Marfan syndrome and Turner syndrome, but the majority of familial cases are not due to a known genetic syndrome. Previous studies by our group have established that nonsyndromic, familial TAAD is inherited in an autosomal dominant manner with decreased penetrance and variable expression. Using one large family with multiple members with TAAD for the genome wide scan, a major locus for familial TAAD was mapped to 5q13–14 (TAAD1). Nine out of 15 families studied were linked to this locus, establishing that TAAD1 was a major locus, and that there was genetic heterogeneity for the condition. Mapping of TAAD2 locus was accomplished using a single large family with multiple members with TAAD not linked to known loci of aneurysm formation. This established a second novel locus for familial TAAD on 3p24–25 (LOD score of 4.3), termed the TAAD2 locus. Two putative loci with suggestive LOD scores were mapped on 4q and 12q through a genome scan carried out using three families. TAAD phenotype in 12 families did not segregate with known loci, indicating further genetic heterogeneity. An STS-tagged BAC based contig was constructed for 7.8Mb and 25Mb critical interval of TAAD1 and TAAD2 respectively and characterized to identify the defective gene. The hypothesis that the defective genes responsible for the TAAD1 and TAAD2 encoded extracellular matrix (ECM) proteins, the major components of the elastic fiber system in the aortic media was tested. Four genes encoding ECM proteins, versican, thrombospondin-3, CRTL1, on TAAD1 and FBLN2 at TAAD2 were sequenced, but no disease-causing mutations were identified. Studies to identify the defective gene are initiated through the positional candidate gene approach using combination of bioinformatics and expression studies. The identification of the TAAD susceptibility genes will allow for presymptomatic diagnosis of individuals at risk for this life threatening disease. The identification of the molecular defects that contribute to TAAD will also further our understanding of the proteins that provide structural integrity to the aortic wall. ^
Resumo:
Objectives. Predict who will develop a dissection. To create male and female prediction models using the risk factors: age, ethnicity, hypertension, high cholesterol, smoking, alcohol use, diabetes, heart attack, congestive heart failure, congenital and non-congenital heart disease, Marfan syndrome, and bicuspid aortic valve. ^ Methods. Using 572 patients diagnosed with aortic aneurysms, a model was developed for each of males and females using 80% of the data and then verified using the remaining 20% of the data. ^ Results. The male model predicted the probability of a male in having a dissection (p=0.076) and the female model predicted the probability of a female in having a dissection (p=0.054). The validation models did not support the choice of the developmental models. ^ Conclusions. The best models obtained suggested that those who are at a greater risk of having a dissection are males with non-congenital heart disease and who drink alcohol, and females with non-congenital heart disease and bicuspid aortic valve.^
Resumo:
Dissecting aortic aneurysm is the hallmark of Marfan syndrome (MFS) and the result of mutations in fibrillin-1, the major constituent of elastin-associated extracellular microfibrils. It is yet to be established whether dysfunction of fibrillin-1 perturbs the ability of the elastic vessel wall to sustain hemodynamic stress by disrupting microfibrillar assembly, by impairing the homeostasis of established elastic fibers, or by a combination of both mechanisms. The pathogenic sequence responsible for the mechanical collapse of the elastic lamellae in the aortic wall is also unknown. Targeted mutation of the mouse fibrillin-1 gene has recently suggested that deficiency of fibrillin-1 reduces tissue homeostasis rather than elastic fiber formation. Here we describe another gene-targeting mutation, mgR, which shows that underexpression of fibrillin-1 similarly leads to MFS-like manifestations. Histopathological analysis of mgR/mgR specimens implicates medial calcification, the inflammatory–fibroproliferative response, and inflammation-mediated elastolysis in the natural history of dissecting aneurysm. More generally, the phenotypic severity associated with various combinations of normal and mutant fibrillin-1 alleles suggests a threshold phenomenon for the functional collapse of the vessel wall that is based on the level and the integrity of microfibrils.
Resumo:
Primary vesicoureteral reflux (VUR) is a common pediatric condition due to a developmental defect in the ureterovesical junction. The prevalence of VUR among individuals with connective tissue disorders, as well as the importance of the ureter and bladder wall musculature for the anti-reflux mechanism, suggest that defects in the extracellular matrix (ECM) within the ureterovesical junction may result in VUR. This review will discuss the function of the smooth muscle and its supporting ECM microenvironment with respect to VUR, and explore the association of VUR with mutations in ECM-related genes.
Resumo:
Las enfermedades raras o huérfanas corresponden a aquellas con baja prevalencia en la población, y en varios países tienen una definición distinta de acuerdo con el número de pacientes que afectan en la población. La Organización Mundial de la Salud (OMS), las define como un trastorno que afecta de 650 a 1.000 personas por millón de habitantes, de las que se han identificado alrededor de 7.000. En Colombia su prevalencia es menor de 1 por cada 5.000 personas y comprenden: las enfermedades raras, las ultra-huérfanas y las olvidadas. Los pacientes con este tipo de enfermedades imponen retos a los sistemas sanitarios, pues si bien afectan a un bajo porcentaje de la población, su atención implica una alta carga económica por los costos que involucra su atención, la complejidad en su diagnóstico, tratamiento, seguimiento y rehabilitación. El abordaje de las enfermedades raras requiere un manejo interdisciplinar e intersectorial, lo que implica la organización de cada actor del sistema sanitario para su manejo a través de un modelo que abraque las dinámicas posibles entre ellos y las competencias de cada uno. Por lo anterior, y teniendo en cuenta la necesidad de formular políticas sanitarias específicas para la gestión de estas enfermedades, el presente trabajo presenta una aproximación a la formulación de un modelo de gestión para la atención integral de pacientes con enfermedades raras en Colombia. Esta investigación describe los distintos elementos y características de los modelos de gestión clínica y de las enfermedades raras a través de una revisión de literatura, en la que se incluye la descripción de los distintos actores del Sistema de Salud Colombiano, relacionados con la atención integral de estos pacientes para la documentación de un modelo de gestión integral.
Resumo:
Marfan's syndrome is caused by mutations in the extracellular matrix protein fibrillin-1 with aortic aneurysm and dissection being its most life-threatening manifestations. Kidney transplantation from donors with Marfan's syndrome has never been reported in the literature, possibly because of reticences due to the underlying connective tissue disease. Here, we report two patients with end-stage renal disease, transplanted with the kidneys from a donor with Marfan's syndrome who died of aortic dissection and cerebral hemorrhage. After delayed graft function in both recipients, renal function normalized with no renovascular complications and negative proteinuria for 6 years in one patient and 2 years in the other patient, who died from an ischemic cerebrovascular insult. Kidneys from organ donors with Marfan's syndrome might be suitable for transplantation.
Resumo:
OBJECTIVE: The purpose of this study was to determine if the thoracic vertebral elements are altered in patients with Marfan's syndrome. MATERIALS AND METHODS: Thirty patients underwent helical CT of the thorax because of suspected thoracic aortic dilatation and acute dissection. Thirteen had Marfan's syndrome and 17 did not. Two reviewers, unaware of the final diagnosis, evaluated the images by consensus for laminar thickness, foraminal width, dural sac ratios, and vertebral scalloping for T2-T12. RESULTS: At T9-T12, dural sac ratios at the midcorpus level (p = 0.031) and foraminal width (p = 0.0124) were significantly greater in the patients with Marfan's syndrome than in the patients without. Dural sac ratios at lower endplate levels (p = 0.0685), laminar thickness (p = 0.951), and vertebral scalloping (p = 0.24) were not significantly greater in the patients with Marfan's syndrome than in the patients without. CONCLUSION: Because the phenotypic expression of Marfan's syndrome is variable, information on the spine from thoracic studies in combination with major criteria may be helpful clinically.