974 resultados para MR-RADIX
Resumo:
BACKGROUND AND PURPOSE Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. The study explores the relationship between the degree of Magnetic Resonance (MR)"defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) particles and the severity of luminal stenosis in asymptomatic carotid plaques. METHODS Seventy-one patients with an asymptomatic carotid stenosis of ĝ‰¥40% underwent multi-sequence USPIO-enhanced MR imaging. Stenosis severity was measured according to the NASCET and ECST methods. RESULTS No demonstrable relationship between inflammation as measured by USPIO-enhanced signal change and the degree of luminal stenosis was found. CONCLUSIONS Inflammation and stenosis are likely to be independent risk factors, although this needs to be further validated.
Resumo:
Objective: The aim of this study was to explore whether there is a relationship between the degree of MR-defined inflammation using ultra small super-paramagnetic iron oxide (USPIO) particles, and biomechanical stress using finite element analysis (FEA) techniques, in carotid atheromatous plaques. Methods and Results: 18 patients with angiographically proven carotid stenoses underwent multi-sequence MR imaging before and 36 h after USPIO infusion. T2 * weighted images were manually segmented into quadrants and the signal change in each quadrant normalised to adjacent muscle was calculated after USPIO administration. Plaque geometry was obtained from the rest of the multi-sequence dataset and used within a FEA model to predict maximal stress concentration within each slice. Subsequently, a new statistical model was developed to explicitly investigate the form of the relationship between biomechanical stress and signal change. The Spearman's rank correlation coefficient for USPIO enhanced signal change and maximal biomechanical stress was -0.60 (p = 0.009). Conclusions: There is an association between biomechanical stress and USPIO enhanced MR-defined inflammation within carotid atheroma, both known risk factors for plaque vulnerability. This underlines the complex interaction between physiological processes and biomechanical mechanisms in the development of carotid atheroma. However, this is preliminary data that will need validation in a larger cohort of patients.
Resumo:
The authors report an in vivo human examination of carotid atheroma by using the inversion-recovery ON resonance (IRON) sequence, which is able to produce positive contrast after the infusion of an ultrasmall super paramagnetic iron oxide (USPIO) contrast medium. This technique provides a method of potentially identifying inflammatory burden within carotid atheroma. This may be particularly useful in patients who currently do not meet criteria for intervention (ie, moderate symptomatic stenosis or <70% asymptomatic stenosis) to further risk-stratify this important patient cohort. A 63-year-old man was imaged at 1.5 T before and 36 hours after USPIO infusion by using the IRON sequence. Regions of interest showing profound signal loss at T2*-weighted imaging corresponded well with regions of positive contrast at IRON imaging after the administration of USPIO. These regions also showed a profound decrease in T2* measurements after USPIO infusion, whereas surrounding tissue did not. It has been shown that such strong signal loss on T2*-weighted images after USPIO infusion is indicative of USPIO uptake.
Resumo:
Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. USPIO-enhanced MRI imaging is a promising non-i nvasive method to identify high-risk atheromatous plaque inflammation in vivo in humans, in which areas of focal signal loss on MR images have been shown to correspond to the location of activated macrophages, typically at the shoulder regions of the plaque. This is the first report in humans describing simultaneous USPIO uptake within atheroma in two different arterial territories and again emphasises that atherosclerosis is a truly systemic disease. With further work, USPIO-enhanced MR imaging may be useful in identifying inflamed vulnerable atheromatous plaques in vivo, so refining patient selection for intervention and allowing appropriate early aggressive pharmacotherapy to prevent plaque rupture.
Resumo:
Digital Image
Resumo:
Participants include Erna Hirsch, Else Giesenow, Marta Nachmann, Erna Goldschmidt (Goldi), Lotte Strauss, Marta Bruchfeld, Toni Eichenberg, Grete Guthmann, Flora Goldschmidt, Hedwig Trum, Hedel Korhmann, Paula Arendt, Erna Behr and Frl. Minka Friedmann
Resumo:
Dedication: Freundlichste Erinnerung an Herrn Prof. Einstein und seine Frau Gemahlin. I-Jing Wang, Shanghai, China
Resumo:
Max Rieser's sister and her husband died in a concentration camp in Poland during the Holocaust
Resumo:
Dedication: Freundlichste Erinnerung an Herrn Prof. Einstein und seine Frau Gemahlin. I-Jing Wang, Shanghai, China