953 resultados para MOTOR LEARNING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated how human subjects adapt to forces perturbing the motion of their ams. We found that this kind of learning is based on the capacity of the central nervous system (CNS) to predict and therefore to cancel externally applied perturbing forces. Our experimental results indicate: (i) that the ability of the CNS to compensate for the perturbing forces is restricted to those spatial locations where the perturbations have been experienced by the moving arm. The subjects also are able to compensate for forces experienced at neighboring workspace locations. However, adaptation decays smoothly and quickly with distance from the locations where disturbances had been sensed by the moving limb. (ii) Our experiments also how that the CNS builds an internal model of the external perturbing forces in intrinsic (muscles and / or joints) coordinates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our daily lives, we often must predict how well we are going to perform in the future based on an evaluation of our current performance and an assessment of how much we will improve with practice. Such predictions can be used to decide whether to invest our time and energy in learning and, if we opt to invest, what rewards we may gain. This thesis investigated whether people are capable of tracking their own learning (i.e. current and future motor ability) and exploiting that information to make decisions related to task reward. In experiment one, participants performed a target aiming task under a visuomotor rotation such that they initially missed the target but gradually improved. After briefly practicing the task, they were asked to select rewards for hits and misses applied to subsequent performance in the task, where selecting a higher reward for hits came at a cost of receiving a lower reward for misses. We found that participants made decisions that were in the direction of optimal and therefore demonstrated knowledge of future task performance. In experiment two, participants learned a novel target aiming task in which they were rewarded for target hits. Every five trials, they could choose a target size which varied inversely with reward value. Although participants’ decisions deviated from optimal, a model suggested that they took into account both past performance, and predicted future performance, when making their decisions. Together, these experiments suggest that people are capable of tracking their own learning and using that information to make sensible decisions related to reward maximization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our daily lives, we often must predict how well we are going to perform in the future based on an evaluation of our current performance and an assessment of how much we will improve with practice. Such predictions can be used to decide whether to invest our time and energy in learning and, if we opt to invest, what rewards we may gain. This thesis investigated whether people are capable of tracking their own learning (i.e. current and future motor ability) and exploiting that information to make decisions related to task reward. In experiment one, participants performed a target aiming task under a visuomotor rotation such that they initially missed the target but gradually improved. After briefly practicing the task, they were asked to select rewards for hits and misses applied to subsequent performance in the task, where selecting a higher reward for hits came at a cost of receiving a lower reward for misses. We found that participants made decisions that were in the direction of optimal and therefore demonstrated knowledge of future task performance. In experiment two, participants learned a novel target aiming task in which they were rewarded for target hits. Every five trials, they could choose a target size which varied inversely with reward value. Although participants’ decisions deviated from optimal, a model suggested that they took into account both past performance, and predicted future performance, when making their decisions. Together, these experiments suggest that people are capable of tracking their own learning and using that information to make sensible decisions related to reward maximization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An economy of effort is a core characteristic of highly skilled motor performance often described as being effortless or automatic. Electroencephalographic (EEG) evaluation of cortical activity in elite performers has consistently revealed a reduction in extraneous associative cortical activity and an enhancement of task-relevant cortical processes. However, this has only been demonstrated under what are essentially practice-like conditions. Recently it has been shown that cerebral cortical activity becomes less efficient when performance occurs in a stressful, complex social environment. This dissertation examines the impact of motor skill training or practice on the EEG cortical dynamics that underlie performance in a stressful, complex social environment. Sixteen ROTC cadets participated in head-to-head pistol shooting competitions before and after completing nine sessions of skill training over three weeks. Spectral power increased in the theta frequency band and decreased in the low alpha frequency band after skill training. EEG Coherence increased in the left frontal region and decreased in the left temporal region after the practice intervention. These suggest a refinement of cerebral cortical dynamics with a reduction of task extraneous processing in the left frontal region and an enhancement of task related processing in the left temporal region consistent with the skill level reached by participants. Partitioning performance into ‘best’ and ‘worst’ based on shot score revealed that deliberate practice appears to optimize cerebral cortical activity of ‘best’ performances which are accompanied by a reduction in task-specific processes reflected by increased high-alpha power, while ‘worst’ performances are characterized by an inappropriate reduction in task-specific processing resulting in a loss of focus reflected by higher high-alpha power after training when compared to ‘best’ performances. Together, these studies demonstrate the power of experience afforded by practice, as a controllable factor, to promote resilience of cerebral cortical efficiency in complex environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model is presented that deals with problems of motor control, motor learning, and sensorimotor integration. The equations of motion for a limb are parameterized and used in conjunction with a quantized, multi-dimensional memory organized by state variables. Descriptions of desired trajectories are translated into motor commands which will replicate the specified motions. The initial specification of a movement is free of information regarding the mechanics of the effector system. Learning occurs without the use of error correction when practice data are collected and analyzed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lee, M., Meng, Q. (2005). Psychologically Inspired Sensory-Motor Development in Early Robot Learning. International Journal of Advanced Robotic Systems, 325-334.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, sonification of movement has emerged as a viable method for the provision of feedback in motor learning. Despite some experimental validation of its utility, controlled trials to test the usefulness of sonification in a motor learning context are still rare. As such, there are no accepted conventions for dealing with its implementation. This article addresses the question of how continuous movement information should be best presented as sound to be fed back to the learner. It is proposed that to establish effective approaches to using sonification in this context, consideration must be given to the processes that underlie motor learning, in particular the nature of the perceptual information available to the learner for performing the task at hand. Although sonification has much potential in movement performance enhancement, this potential is largely unrealised as of yet, in part due to the lack of a clear framework for sonification mapping: the relationship between movement and sound. By grounding mapping decisions in a firmer understanding of how perceptual information guides learning, and an embodied cognition stance in general, it is hoped that greater advances in use of sonification to enhance motor learning can be achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-controlled KR practice has revealed that providing participants the opportunity to control their KR is superior for motor learning compared to participants replicating the KR schedule of a self-control participant, without the choice (e.g., yoked). The purpose of the present experiment was two-fold. First, to examine the utility of a self-controlled KR schedule for learning a spatial motor task in younger and older adults and second, to determine whether a self-controlled KR schedule facilitates an increased ability to estimate one’s performance in retention and transfer. Twenty younger adults and 20 older adults practiced in either the self-control or yoked condition and were required to push and release a slide along a confined pathway using their non-dominant hand to a target distance. The retention data revealed that as a function of age, a self-controlled KR schedule facilitated superior retention performance and performance estimations in younger adults compared to their yoked counterparts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous research has demonstrated superior learning by participants presented with augmented task information retroactively versus proactively (Patterson & Lee, 2008; 2010). Theoretical explanations of these findings are related to the cognitive effort invested by participants during motor skill acquisition. The present study extended previous research by utilizing the physiological index, power spectral analysis of heart rate variability, previously shown to be sensitive to the degree of cognitive effort invested during the performance of a motor task (e.g., increase cognitive effort results in increased LF/HF ratio). Participants were required to learn 18 different key-pressing sequences. As expected, the proactive condition demonstrated superior RS during acquisition, with the retroactive condition demonstrating superior RS during retention. Measures of LF/HF ratio indicated the retroactive participants were investing significantly less cognitive effort in the retention period compared to the proactive participants (p< .05) as a function of learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’observation d’un modèle pratiquant une habileté motrice promeut l’apprentissage de l’habileté en question. Toutefois, peu de chercheurs se sont attardés à étudier les caractéristiques d’un bon modèle et à mettre en évidence les conditions d’observation pouvant optimiser l’apprentissage. Dans les trois études composant cette thèse, nous avons examiné les effets du niveau d’habileté du modèle, de la latéralité du modèle, du point de vue auquel l’observateur est placé, et du mode de présentation de l’information sur l’apprentissage d’une tâche de timing séquentielle composée de quatre segments. Dans la première expérience de la première étude, les participants observaient soit un novice, soit un expert, soit un novice et un expert. Les résultats des tests de rétention et de transfert ont révélé que l’observation d’un novice était moins bénéfique pour l’apprentissage que le fait d’observer un expert ou une combinaison des deux (condition mixte). Par ailleurs, il semblerait que l’observation combinée de modèles novice et expert induise un mouvement plus stable et une meilleure généralisation du timing relatif imposé comparativement aux deux autres conditions. Dans la seconde expérience, nous voulions déterminer si un certain type de performance chez un novice (très variable, avec ou sans amélioration de la performance) dans l’observation d’une condition mixte amenait un meilleur apprentissage de la tâche. Aucune différence significative n’a été observée entre les différents types de modèle novices employés dans l’observation de la condition mixte. Ces résultats suggèrent qu’une observation mixte fournit une représentation précise de ce qu’il faut faire (modèle expert) et que l’apprentissage est d’autant plus amélioré lorsque l’apprenant peut contraster cela avec la performance de modèles ayant moins de succès. Dans notre seconde étude, des participants droitiers devaient observer un modèle à la première ou à la troisième personne. L’observation d’un modèle utilisant la même main préférentielle que soi induit un meilleur apprentissage de la tâche que l’observation d’un modèle dont la dominance latérale est opposée à la sienne, et ce, quel que soit l’angle d’observation. Ce résultat suggère que le réseau d’observation de l’action (AON) est plus sensible à la latéralité du modèle qu’à l’angle de vue de l’observateur. Ainsi, le réseau d’observation de l’action semble lié à des régions sensorimotrices du cerveau qui simulent la programmation motrice comme si le mouvement observé était réalisé par sa propre main dominante. Pour finir, dans la troisième étude, nous nous sommes intéressés à déterminer si le mode de présentation (en direct ou en vidéo) influait sur l’apprentissage par observation et si cet effet est modulé par le point de vue de l’observateur (première ou troisième personne). Pour cela, les participants observaient soit un modèle en direct soit une présentation vidéo du modèle et ceci avec une vue soit à la première soit à la troisième personne. Nos résultats ont révélé que l’observation ne diffère pas significativement selon le type de présentation utilisée ou le point de vue auquel l’observateur est placé. Ces résultats sont contraires aux prédictions découlant des études d’imagerie cérébrale ayant montré une activation plus importante du cortex sensorimoteur lors d’une observation en direct comparée à une observation vidéo et de la première personne comparée à la troisième personne. Dans l’ensemble, nos résultats indiquent que le niveau d’habileté du modèle et sa latéralité sont des déterminants importants de l’apprentissage par observation alors que le point de vue de l’observateur et le moyen de présentation n’ont pas d’effets significatifs sur l’apprentissage d’une tâche motrice. De plus, nos résultats suggèrent que la plus grande activation du réseau d’observation de l’action révélée par les études en imagerie mentale durant l’observation d’une action n’induit pas nécessairement un meilleur apprentissage de la tâche.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work investigated the effects of frequency and precision of feedback on the learning of a dual-motor task. One hundred and twenty adults were randomly assigned to six groups of different knowledge of results (KR), frequency (100%, 66% or 33%) and precision (specific or general) levels. In the stabilization phase, participants performed the dual task (combination of linear positioning and manual force control) with the provision of KR. Ten non-KR adaptation trials were performed for the same task, but with the introduction of an electromagnetic opposite traction force. The analysis showed a significant main effect for frequency of KR. The participants who received KR in 66% of the stabilization trials showed superior adaptation performance than those who received 100% or 33%. This finding reinforces that there is an optimal level of information, neither too high nor too low, for motor learning to be effective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this review is to investigate how transcranial direct current stimulation(tDCS)can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT), the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.