56 resultados para MOMORDICA BALSAMINA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with present and discuss mainly the chemical composition and pharmacological activities of each species of the National List of Medicinal plants of interest to SUS (RENISUS) contained in scientific articles that are found in the Bauru-SP region. Such information compiled in this study may help in the advancement of scientific research, promoting the speed in bibliographic queries these species. In the present work was carried out consultation papers and described in the form of literature review, published information of the species listed in Renisus specific to the Bauru-SP region are: Aloe spp* (A. vera or A. barbadensis), Schinus terebinthifolius = mastic Schinus, trimera Baccharis, Mikania spp* (M. glomerata and M. laevigata), Vernonia condensata, Tabebuia avellanedeae, Chenopodium ambrosioides, Momordica charantia, Phyllanthus spp* (P. amarus, P. niruri, P. tenellus and P. urinaria), Stryphnodendron adstringens = Stryphnodendron barbatimam, pulegium Mentha, Mentha spp* (M. crispa, M. piperita or M. villosa), Plectranthus barbatus = Coleus barbatus, Persea spp* (gratissima or P. americana P.), Bauhinia spp* (B. affinis, B. forficata or B. variegata), Copaifera spp*, Morus sp*, Eugenia uniflora or brasiliana Myrtus*, Psidium guajava, Syzygium spp* (S. jambolanum or S. cumini), Passiflora spp* (P. alata, P. edulis or P. incarnata), Punica granatum and Casearia sylvestris. Studies have shown that the use of plants as alternatives treatment and sustainable use of Brazilian biodiversity has a breakthrough in research regarding the chemical composition of each species of RENISUS relationship. Many phytochemical studies are reported compiled with possible pharmacological indications of each species. Thus enabling the use and production of herbal medicines in SUS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En febrero de 1998 se observó en cultivos de pimiento y ají de Mendoza (Argentina) muerte anticipada de plantas con severos daños en la producción. La magnitud del problema motivó una prospección en los principales oasis de la provincia, a fin de describir la sintomatología, conocer su dispersión, estimar los daños causados y recolectar material para realizar estudios en laboratorio tendientes a confirmar su etiología. Se constató que la afección se encontraba distribuida en todos los oasis del centro y norte. La sintomatología en hojas se caracterizó por la presencia en la cara adaxial de manchas amarillentas, de forma circular de 15 a 20 mm de diámetro, con puntuaciones necróticas, con tendencia a presentarse en anillos concéntricos. En la cara abaxial, generalmente las lesiones eran acompañadas de un micelio blanco tenue. Posteriormente siguió una severa defoliación. La producción disminuyó notablemente y además en pimiento los frutos fueron afectados por escaldaduras de sol y perdieron su valor comercial. A partir de aislamientos de pimiento y ají, mantenidos en plantas de brincos (Impatiens balsamina L.), se inocularon plantas sanas y se logró reproducir la enfermedad en condiciones de invernáculo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed the process of inflorescence formation in Impatiens balsamina by studying the architecture of the plant under different photoperiod treatments. Floral reversion under noninductive conditions in this species is caused by the lack of persistence of the induced state in the leaf. This can be used to control the amount of inductive signal and to examine its quantitative influence on morphological changes in the plant. The floral transition was characterized by a continuum of variation at the level of meristem identity, primordium initiation, and floral organ identity. This continuum was enhanced during reversion, suggesting that the establishment of a continuum partly reflects limiting amounts of inductive signal exported from the leaf to the meristem. The transcription patterns of two homologs of genes involved in the control of floral meristem identity, Imp-FLO and Imp-FIM, were similar in terminal and axillary flowers and may be associated with the continuum exhibited by I. balsamina. By analyzing the fate of axillary meristem primordia initiated before and after the beginning of the inductive period, we showed that de novo initiation of axillary meristem primordia by the evoked meristem is not required and that primordia initiated before evocation can adopt different fates, depending on the amount of inductive signal. The influence of age and/or position on primordium responsiveness to the inductive signal is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MAP30 (Momordica anti-HIV protein of 30 kDa) and GAP31 (Gelonium anti-HIV protein of 31 kDa) are anti-HIV plant proteins that we have identified, purified, and cloned from the medicinal plants Momordica charantia and Gelonium multiflorum. These antiviral agents are capable of inhibiting infection of HIV type 1 (HIV-1) in T lymphocytes and monocytes as well as replication of the virus in already-infected cells. They are not toxic to normal uninfected cells because they are unable to enter healthy cells. MAP30 and GAP31 also possess an N-glycosidase activity on 28S ribosomal RNA and a topological activity on plasmid and viral DNAs including HIV-1 long terminal repeats (LTRs). LTRs are essential sites for integration of viral DNA into the host genome by viral integrase. We therefore investigated the effect of MAP30 and GAP31 on HIV-1 integrase. We report that both of these antiviral agents exhibit dose-dependent inhibition of HIV-1 integrase. Inhibition was observed in all of the three specific reactions catalyzed by the integrase, namely, 3' processing (specific cleavage of the dinucleotide GT from the viral substrate), strand transfer (integration), and "disintegration" (the reversal of strand transfer). Inhibition was studied by using oligonucleotide substrates with sequences corresponding to the U3 and U5 regions of HIV LTR. In the presence of 20 ng of viral substrate, 50 ng of target substrate, and 4 microM integrase, total inhibition was achieved at equimolar concentrations of the integrase and the antiviral proteins, with EC50 values of about 1 microM. Integration of viral DNA into the host chromosome is a vital step in the replicative cycle of retroviruses, including the AIDS virus. The inhibition of HIV-1 integrase by MAP30 and GAP31 suggests that impediment of viral DNA integration may play a key role in the anti-HIV activity of these plant proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (LeNguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years an increasing number of miniproteins containing an amide-cyclized backbone have been discovered. The cyclotide family is the largest group of such proteins and is characterized by a circular protein backbone and six conserved cysteine residues linked by disulfide bonds in a tight core of the molecule. These form a cystine knot in which an embedded ring formed by two of the disulfide bonds and the connecting backbone segment is threaded by a third disulfide bond. In the current study we have undertaken high resolution structural analysis of two prototypic cyclotides, kalata B1 and cycloviolacin O1, to define the role of the conserved residues in the sequence. We provide the first comprehensive analysis of the topological features in this unique family of proteins, namely rings (a circular backbone), twists (a cis-peptide bond in the Mobius cyclotides) and knots (a knotted arrangement of the disulfide bonds).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cyclotides constitute a recently discovered family of plant-derived peptides that have the unusual features of a head-to-tail cyclized backbone and a cystine knot core. These features are thought to contribute to their exceptional stability, as qualitatively observed during experiments aimed at sequencing and characterizing early members of the family. However, to date there has been no quantitative study of the thermal, chemical, or enzymatic stability of the cyclotides. In this study, we demonstrate the stability of the prototypic cyclotide kalata B1 to the chaotropic agents 6 M guanidine hydrochloride (GdHCl) and 8 M urea, to temperatures approaching boiling, to acid, and following incubation with a range of proteases, conditions under which most proteins readily unfold. NMR spectroscopy was used to demonstrate the thermal stability, while fluorescence and circular dichroism were used to monitor the chemical stability. Several variants of kalata B1 were also examined, including kalata 132, which has five amino acid substitutions from B1, two acyclic permutants in which the backbone was broken but the cystine knot was retained, and a two-disulfide bond mutant. Together, these allowed determinations of the relative roles of the cystine knot and the circular backbone on the stability of the cyclotides. Addition of a denaturant to kalata B1 or an acyclic permutant did not cause unfolding, but the two-disulfide derivative was less stable, despite having a similar three-dimensional structure. It appears that the cystine knot is more important than the circular backbone in the chemical stability of the cyclotides. Furthermore, the cystine knot of the cyclotides is more stable than those in similar-sized molecules, judging by a comparison with the conotoxin PVIIA. There was no evidence for enzymatic digestion of native kalata B1 as monitored by LC-MS, but the reduced form was susceptible to proteolysis by trypsin, endoproteinase Glu-C, and thermolysin. Fluorescence spectra of kalata B1 in the presence of dithiothreitol, a reducing agent, showed a marked increase in intensity thought to be due to removal of the quenching effect on the Trp residue by the neighboring Cys5-Cys17 disulfide bond. In general, the reduced peptides were significantly more susceptible to chemical or enzymatic breakdown than the oxidized species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cyclotides are a family of small disulfide rich proteins that have a cyclic peptide backbone and a cystine knot formed by three conserved disulfide bonds. The combination of these two structural motifs contributes to the exceptional chemical, thermal and enzymatic stability of the cyclotides, which retain bioactivity after boiling. They were initially discovered based on native medicine or screening studies associated with some of their various activities, which include uterotonic action, anti-HIV activity, neurotensin antagonism, and cytotoxicity. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaccae families and their natural function in plants appears to be in host defense: they have potent activity against certain insect pests and they also have antimicrobial activity. There are currently around 50 published sequences of cyclotides and their rate of discovery has been increasing over recent years. Ultimately the family may comprise thousands of members. This article describes the background to the discovery of the cyclotides, their structural characterization, chemical synthesis, genetic origin, biological activities and potential applications in the pharmaceutical and agricultural industries. Their unique topological features make them interesting from a protein folding perspective. Because of their highly stable peptide framework they might make useful templates in drug design programs, and their insecticidal activity opens the possibility of applications in crop protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SFTI-1 is a bicyclic 14 amino acid peptide that was originally isolated from the seeds of the sunflower Helianthus annuus. It is a potent inhibitor of trypsin, with a sub-nanomolar K, value and is homologous to the active site region of the well-known family of serine protease inhibitors known as the Bowman-Birk trypsin inhibitors. It has a cyclic backbone that is cross-braced by a single disulfide bridge and a network of hydrogen bonds that result in a well-defined structure. SFTI-1 is amenable to chemical synthesis, allowing for the creation of synthetic variants. Alterations to the structure such as linearising the backbone or removing the disulfide bridge do not reduce the potency of SFTI-1 significantly, and minimising the peptide to as few as nine residues results in only a small decrease in reactivity. The creation of linear variants of SFTI-1 also provides a tool for investigating putative linear precursor peptides. The mechanism of biosynthesis of SFTI-1 is not yet known but it seems likely that it is a gene-coded product that has arisen from a precursor protein that may be evolutionarily related to classic Bowman-Birk inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The traditional idea of proteins as linear chains of amino acids is being challenged with the discovery of miniproteins that contain a circular backbone. The cyclotide family is the largest group of circular proteins and is characterized by an amide-circularized protein backbone and six conserved cysteine residues. These conserved cysteines are paired to form a knotted network of disulfide bonds. The combination of the circular backbone and a cystine knot, known as the cyclic cystine knot (CCK) motif, confers exceptional stability upon the cyclotides. This review discusses the role of the circular backbone based on studies of both the oxidative folding of kalata B1, the prototypical cyclotide, and a comparison of the structure and activity of kalata B1 and its acyclic permutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclotides are plant-derived miniproteins that have the unusual features of a head-to-tail cyclized peptide backbone and a knotted arrangement of disulfide bonds. It had been postulated that they might be an especially large family of host defense agents, but this had not yet been tested by field data on cyclotide variation in wild plant populations. In this study, we sampled Australian Hybanthus (Violaceae) to gain an insight into the level of variation within populations, within species, and between species. A wealth of cyclotide diversity was discovered: at least 246 new cyclotides are present in the 11 species sampled, and 26 novel sequences were characterized. A new approach to the discovery of cyclotide sequences was developed based on the identification of a conserved sequence within a signal sequence in cyclotide precursors. The number of cyclotides in the Violaceae is now estimated to be >9000. Cyclotide physicochemical profiles were shown to be a useful taxonomic feature that reflected species and their morphological relationships. The novel sequences provided substantial insight into the tolerance of the cystine knot framework in cyclotides to amino acid substitutions and will facilitate protein engineering applications of this framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.