988 resultados para MOLECULAR ENVIRONMENTS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present thesis, questions of spectral tuning, the relation of spectral and thermal properties of visual pigments, and evolutionary adaptation to different light environments were addressed using a group of small crustaceans of the genus Mysis as a model. The study was based on microspectrophotometric measurements of visual pigment absorbance spectra, electrophysiological measurements of spectral sensitivities of dark-adapted eyes, and sequencing of the opsin gene retrieved through PCR. The spectral properties were related to the spectral transmission of the respective light environments, as well as to the phylogentic histories of the species. The photoactivation energy (Ea) was estimated from temperature effects on spectral sensitivity in the long-wavelength range, and calculations were made for optimal quantum catch and optimal signal-to-noise ratio in the different light environments. The opsin amino acid sequences of spectrally characterized individuals were compared to find candidate residues for spectral tuning. The general purpose was to clarify to what extent and on what time scale adaptive evolution has driven the functional properties of (mysid) visual pigments towards optimal performance in different light environments. An ultimate goal was to find the molecular mechanisms underlying the spectral tuning and to understand the balance between evolutionary adaptation and molecular constraints. The totally consistent segregation of absorption maxima (λmax) into (shorter-wavelength) marine and (longer-wavelength) freshwater populations suggests that truly adaptive evolution is involved in tuning the visual pigment for optimal performance, driven by selection for high absolute visual sensitivity. On the other hand, the similarity in λmax and opsin sequence between several populations of freshwater M. relicta in spectrally different lakes highlights the limits to adaptation set by evolutionary history and time. A strong inverse correlation between Ea and λmax was found among all visual pigments studied in these respects, including those of M. relicta and 10 species of vertebrate pigments, and this was used to infer thermal noise. The conceptual signal-to-noise ratios thus calculated for pigments with different λmax in the Baltic Sea and Lake Pääjärvi light environments supported the notion that spectral adaptation works towards maximizing the signal-to-noise ratio rather than quantum catch as such. Judged by the shape of absorbance spectra, the visual pigments of all populations of M. relicta and M. salemaai used exclusively the A2 chromophore (3, 4-dehydroretinal). A comparison of amino acid substitutions between M. relicta and M. salemaai indicated that mysid shrimps have a small number of readily available tuning sites to shift between a shorter - and a longer -wavelength opsin. However, phylogenetic history seems to have prevented marine M. relicta from converting back to the (presumably) ancestral opsin form, and thus the more recent reinvention of marine spectral sensitivity has been accomplished by some other novel mechanism, yet to be found

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By “phenotypic plasticity” we refer to the capacity of a genotype to exhibit different phenotypes, whether in the same or in different environments. We have previously demonstrated that phenotypic plasticity can improve the degree of adaptation achieved via natural selection (Behera & Nanjundiah, 1995). That result was obtained from a genetic algorithm model of haploid genotypes (idealized as one-dimensional strings of genes) evolving in a fixed environment. Here, the dynamics of evolution is examined under conditions of a cyclically varying environment. We find that the rate of evolution, as well as the extent of adaptation (as measured by mean population fitness) is lowered because of environmental cycling. The decrease is adaptation caused by a varying environment can, however, be partly or wholly compensated by an increase in the degree of plasticity that a genotype is capable of. Also, the reduction of population fitness caused by a variable environment can be partially offset by decreasing the total number of genetic loci. We conjecture that an increase in genome size may have been among the factors responsible for the evolution of phenotypic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Valinomycin is a highly flexible cyclic dodecadepsipeptide that transports ions across membranes. Such a flexibility in the conformation is required for its biological function since it has to encounter a variety of environments and liganding state. Exploration of conformational space of this molecule is therefore important and is one of the objectives of the present study that has been carried out by means of high temperature Molecular Dynamics. Further, the stability of the known bracelet-like structure of the uncomplexed valinomycin and the inherent flexibility around this structure has been investigated. The uncomplexed form of valinomycin has been simulated at 75–100 K for 1 ns in order to elucidate the average conformational properties. An alanine-analog of valinomycin has been simulated under identical conditions in order to evaluate the effect of sidechain on the conformational properties, The studies confirm the effect of sidechain on conformational equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological studies have shown an elevation in the incidence of asthma, allergic symptoms and respiratory infections among people living or working in buildings with moisture and mould problems. Microbial growth is suspected to have a key role, since the severity of microbial contamination and symptoms show a positive correlation, while the removal of contaminated materials relieves the symptoms. However, the cause-and-effect relationship has not been well established and knowledge of the causative agents is incomplete. The present consensus of indoor microbes relies on culture-based methods. Microbial cultivation and identification is known to provide qualitatively and quantitatively biased results, which is suspected to be one of the reasons behind the often inconsistent findings between objectively measured microbiological attributes and health. In the present study the indoor microbial communities were assessed using culture-independent, DNA based methods. Fungal and bacterial diversity was determined by amplifying and sequencing the nucITS- and16S-gene regions, correspondingly. In addition, the cell equivalent numbers of 69 mould species or groups were determined by quantitative PCR (qPCR). The results from molecular analyses were compared with results obtained using traditional plate cultivation for fungi. Using DNA-based tools, the indoor microbial diversity was found to be consistently higher and taxonomically wider than viable diversity. The dominant sequence types of fungi, and also of bacteria were mainly affiliated with well-known microbial species. However, in each building they were accompanied by various rare, uncultivable and unknown species. In both moisture-damaged and undamaged buildings the dominant fungal sequence phylotypes were affiliated with the classes Dothideomycetes (mould-like filamentous ascomycetes); Agaricomycetes (mushroom- and polypore-like filamentous basidiomycetes); Urediniomycetes (rust-like basidiomycetes); Tremellomycetes and the family Malasseziales (both yeast-like basidiomycetes). The most probable source for the majority of fungal types was the outdoor environment. In contrast, the dominant bacterial phylotypes in both damaged and undamaged buildings were affiliated with human-associated members within the phyla Actinobacteria and Firmicutes. Indications of elevated fungal diversity within potentially moisture-damage-associated fungal groups were recorded in two of the damaged buildings, while one of the buildings was characterized by an abundance of members of the Penicillium chrysogenum and P. commune species complexes. However, due to the small sample number and strong normal variation firm conclusions concerning the effect of moisture damage on the species diversity could not be made. The fungal communities in dust samples showed seasonal variation, which reflected the seasonal fluctuation of outdoor fungi. Seasonal variation of bacterial communities was less clear but to some extent attributable to the outdoor sources as well. The comparison of methods showed that clone library sequencing was a feasible method for describing the total microbial diversity, indicated a moderate quantitative correlation between sequencing and qPCR results and confirmed that culture based methods give both a qualitative and quantitative underestimate of microbial diversity in the indoor environment. However, certain important indoor fungi such as Penicillium spp. were clearly underrepresented in the sequence material, probably due to their physiological and genetic properties. Species specific qPCR was a more efficient and sensitive method for detecting and quantitating individual species than sequencing, but in order to exploit the full advantage of the method in building investigations more information is needed about the microbial species growing on damaged materials. In the present study, a new method was also developed for enhanced screening of the marker gene clone libraries. The suitability of the screening method to different kinds of microbial environments including biowaste compost material and indoor settled dusts was evaluated. The usability was found to be restricted to environments that support the growth and subsequent dominance of a small number microbial species, such as compost material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intramolecular S center dot center dot center dot O chalcogen bonding and its potential to lock molecular conformation have been examined in the crystal forms of sulfamethizole, a sulfonamide antibiotic. Molecular complexes of sulfamethizole, including salts and cocrystal, have been synthesized, and their crystal structures were analyzed in order to examine the possible conformational preferences of the molecule in various ionic states and supramolecular environments (neutral/cocrystal, anionic salt, and cationic salt forms). The electrostatic potential mapped on Hirshfeld surfaces generated for these crystal forms provides insights into the possible binding modes of the drug in different environments. Further, the observed conformation locking feature has been rationalized in terms of the experimental charge density features of the intramolecular S center dot center dot O chalcogen bonding in sulfamethizole. The study quantitatively illustrates and rationalizes an intriguing case of a local minimum of molecular conformation being exclusively preferred over the global minimum, as it facilitates more efficient intermolecular interactions in a supramolecular environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synthetic strategy is described for the co-crystallization of four-and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by “GAMESS”, and the rest atoms are treated as MM part calculated by “TINKER”. The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with theQMpart with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(1 0 0) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the imidazole rings are attached to the substrate more tightly than other bases in this peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barnacle cement is an underwater adhesive that is used for permanent settlement. Its main components are insoluble protein complexes that have not been fully studied. In present article, we chose two proteins of barnacle cement for study, 36-KD protein and Mrcp-100K protein. In order to investigate the characteristic of above two proteins, we introduced the method of molecular modeling. And the simulation package GROMACS was used to simulate the behavior of these proteins. In this article, before the simulations, we introduce some theories to predict the time scale for polymer relaxation. During the simulation, we mainly focus on two properties of these two proteins: structural stability and adhesive force to substrate. First, we simulate the structural stability of two proteins in water, and then the stability of 36-KD protein in seawater environment is investigated.We find that the stability varies in the different environments. Next, to study adhesive ability of two proteins, we simulate the process of peeling the two proteins from the substrate (graphite). Then, we analyze the main reasons of these results. We find that hydrogen bonds in proteins play an important role in the protein stability. In the process of the peeling, we use Lennard–Jones 12-6 potential to calculate the van der Waals interactions between proteins and substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by "GAMESS", and the rest atoms are treated as MM part calculated by "TINKER". The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with the QM part with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(100) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the in-tidazole rings are attached to the substrate more tightly than other bases in this peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Barnacle cement is an underwater adhesive that is used for permanent settlement. Its main components are insoluble protein complexes that have not been fully studied. In present article, we chose two proteins of barnacle cement for study, 36-KD protein and Mrcp-100K protein. In order to investigate the characteristic of above two proteins, we introduced the method of molecular modeling. And the simulation package GROMACS was used to simulate the behavior of these proteins. In this article, before the simulations, we introduce some theories to predict the time scale for polymer relaxation. During the simulation, we mainly focus on two properties of these two proteins: structural stability and adhesive force to substrate. First, we simulate the structural stability of two proteins in water, and then the stability of 36-KD protein in seawater environment is investigated. We find that the stability varies in the different environments. Next, to study adhesive ability of two proteins, we simulate the process of peeling the two proteins from the substrate (graphite). Then, we analyze the main reasons of these results. We find that hydrogen bonds in proteins play an important role in the protein stability. In the process of the peeling, we use Lennard-Jones 12-6 potential to calculate the van der Waals interactions between proteins and substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Em estudo anterior, as espécies de enterobactérias apresentando perfis variados de resistência aos antimicrobianos foram detectadas em 20% dos sítios com lesões periodontais de pacientes sadios do ponto de vista sistêmico. Tais cepas microbianas foram submetidas a investigações com o intuito de determinar à expressão de enzimas hidrolíticas para substratos diversos, a multirresistência aos agentes antimicrobianos e os mecanismos de resistência aos antimicrobianos da classe dos β lactâmicos. A maioria das amostras expressou atividade de gelatinase (65%), caseinase (30%) e elastase (10%). Lipase, lecitinase e DNase foram observadas apenas para Serratia marcescens. A multirresistência (considerado como a resistência a pelo menos dois agentes antimicrobianos de famílias diferentes) foi observada em 56% das amostras isoladas. A maioria das cepas foi resistentes à ampicilina (93,75%) e amoxicilina/ácido clavulânico (81,25%). Investigações sobre a resistência aos antibióticos β-lactâmicos mostraram que três amostras resistentes à cefalosporinas de 2 geração, apresentaram perfis plasmidiais de diferentes pesos moleculares. A expressão fenotípica de β-lacatamases, foi detectada nas cepas de Enterobacter cloacae (PcOM46 e PcOM5) e S. marcescens (PcOM63). No entanto, na análise molecular, não foi possível confirmar a expressão fenotípica de diferentes β-lactamases, com exceção do E. cloacae PcOM46, que apresentou amplificação para AmpC e blaTEM. Embora sensível à maioria dos antibióticos β-lactâmicos (exceção feita à ampicilina e amoxicilina / ácido clavulânico), amostra de S. marcescens PcOM68 apresentou amplificação para o gene blaSHV. Os experimentos de conjugação não detectaram a transferência de plasmídios para uma cepa de Escherichia coli K12 sensívei aos β-lactâmicos, o mesmo ocorreu nos procedimentos de transformação por eletroporação e por CaCl2, sugerindo uma resistência dependente de genes cromossomiais. A expressão de diferentes atividades enzimáticas, juntamente com a resistência aos antimicrobianos, aponta estes grupos de bactérias como agentes patogênicos potenciais capazes de contribuir para a patogênese e resposta à quimioterapia antimicrobiana nas doenças periodontais, além da disseminação sistêmica para outros locais do corpo, especialmente em indivíduos imunocomprometidos. A colonização prévia de lesões periodontais por espécies resistentes aos β-lactâmicos, pode contribuir para a disseminação destes genes relacionados à resistência aos antimicrobianos em ambientes hospitalares.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buscamos detectar evidências da presença de genes envolvidos na produção de Enzimas Modificadoras de Aminoglicosídeos (EMAs), Beta-lactamases de espectro estendido (ESBLs) e Mecanismos Plasmidiais de Resistência a Quinolonas (PMQRs) em cepas de K. pneumoniae, K. ozaenae e E. coli isoladas de amostras de água de rios afluentes da Baía de Guanabara e de materiais clínicos de origem hospitalar, além de avaliar o "status sanitário" dos corpos aquáticos abordados no tocante à contaminação fecal recente e indicações de contaminação hospitalar e por outros ambientes de alta seletividade. As cepas de materiais clínicos foram selecionadas entre Maio e Julho de 2010, a partir da semeadura em meio de cultura contendo 8g/mL de gentamicina. As amostras de água foram coletadas em Abril e em Julho de 2009. Realizamos testes de colimetria, empregando para tal, a metodologia convencional e outra, na qual adicionamos 32g/mL de cefalotina e 8g/mL de gentamicina aos caldos Lactosado e Escherichia coli (caldo EC), a fim de detectar e quantificar coliformes resistentes. Para o isolamento das cepas empregamos meios de cultura contendo 32g/mL de cefalotina e 8g/mL de gentamicina. As cepas foram identificadas e submetidas a testes de susceptibilidade aos antimicrobianos (TSA), testes presuntivos para presença de ESBLs, extração de DNA plasmidial e ensaios de Reação em Cadeia de Polimerase (PCR) para a detecção dos genes. A utilização de agentes antimicrobianos nos testes de colimetria nos permitiu detectar a presença e quantificar coliformes totais e fecais resistentes nas amostras de água analisadas nos diferentes pontos. O TSA das cepas isoladas de amostras de água exibiu perfis de multirresistência, compatíveis com o de bactérias de origem hospitalar, semelhante ao encontrado nas cepas isoladas de materiais clínicos. Todas as cepas isoladas de amostras de água e 90% das cepas de materiais clínicos apresentaram pelo menos uma banda plasmidial. Os ensaios de PCR evidenciaram a presença de produtos de amplificação para EMAs, ESBLs e PMQRs, sendo que 7,4% das cepas de amostras de água e 20% das cepas de materiais clínicos apresentaram produtos de amplificação para as três classes de antimicrobianos. A realização de testes de colimetria empregando antimicrobianos, como gentamicina e cefalotina, pode ser uma ferramenta adicional importante ao teste convencional, quando o interesse for, o monitoramento e a prevenção de contaminação ambiental, especialmente associada a microrganismos carreando genes de resistência. O uso criterioso de antimicrobianos em atividades de cunho hospitalar e veterinário e medidas no sentido de prevenção de lançamento de esgoto e/ou tratamento dos efluentes, são fundamentais para o controle da disseminação de elementos genéticos de resistência transferíveis entre os microrganismos. A detecção e identificação de microrganismos apresentando elementos de resistência em ambiente extra-hospitalar como em água e solo, em particular, o emprego de testes de colimetria empregando antimicrobianos, se faz necessária, como forma de prevenção e controle de disseminação destes microrganismos com potencial de causar infecções em humanos e outros animais que eventualmente entram em contato com estes ambientes.