993 resultados para MARINE-SEDIMENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present initial isotopic ratios of lead for Early Cretaceous (Barremian-Aptian) sections from Shatsky Rise (Pacific) and Gorgo a Cerbara (Italy). Our Pb isotopic data track an interval representing Oceanic Anoxic Event (OAE)-1a, which is characterized by quasi-global deposition of organic carbon-rich black shale. Pb isotopic compositions of sediments from Shatsky Rise decrease at the end of Barremian time, from radiogenic continental values to unradiogenic values, and subsequently remained less radiogenic until the end of early Aptian time. We explain the isotopic shift by a significant increase in supply rate of unradiogenic Pb, most likely due to massive volcanism. In contrast, the Pb isotopic compositions from the Italian section, which was situated at the western end of Tethys, are mostly identical to those of upper continental crust, showing no significant change in supply rate of unradiogenic Pb. The discrepancy between two sites is attributed to quiescent deep-submarine eruptions of Pacific large igneous provinces (LIPs) such as the Ontong Java Plateau (OJP), which severely limited dispersion of Pb-carrying particles out of the Pacific Ocean. Published Os isotopic data from the Italian section indicate two episodes of massive eruptions of OJP or contemporaneous Manihiki and Hikurangi plateaus starting from earliest Aptian time, slightly later than that indicated by the sedimentary Pb isotopic record from Shatsky Rise. Differences in isotopic variations between Pb and Os likely reflect differences in their chemical behaviors in the oceans, i.e., Pb isotopic compositions would have varied in response to local or regional changes in sediment provenances, whereas large-scale changes in Os inputs are required to explain variations in seawater Os isotopic compositions. Our Pb isotopic data, together with the published Os isotopic record, provide new evidence for the eruptive history of OJP together with contemporaneous Pacific plateaus and its environmental consequences, starting from end-Barremian time and extending through early Aptian time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the driving forces for Pleistocene climate change more fully we need to compare the timing of climate events with their possible forcing. In contrast to the last interglacial (marine isotope stage (MIS) 5) the timing of the penultimate interglacial (MIS 7) is poorly constrained. This study constrains its timing and structure by precise U-Th dating of high-resolution delta18O records from aragonite-rich Bahamian slope sediments of ODP Leg 166 (Sites 1008 and 1009). The major glacial-interglacial cycles in delta18O are distinct within these cores and some MIS 7 substages can be identified. These sediments are well suited for U-Th dating because they have uranium concentrations of up to 12 ppm and very low initial 230Th contributions with most samples showing 230Th/232Th activity ratio of >75. U and Th concentrations and isotope ratios were measured by thermal ionisation mass spectrometry and multiple collector inductively coupled plasma mass spectrometry, with the latter providing dramatically better precision. Twenty-nine of the 41 samples measured have a delta234U value close to modern seawater suggesting that they have experienced little diagenesis. Ages from 27 of the 41 samples were deemed reliable on the basis of both their U and their Th isotope ratios. Ages generally increase with depth, although we see a repeated section of stratigraphy in one core. Extrapolation of constant sedimentation rate through each substage suggests that the peak of MIS 7e lasted from ~237 to 228 ka and that 7c began at 215 ka. This timing is consistent with existing low precision radiometric dates from speleothem deposits. The beginning of both these substages appears to be slightly later than in orbitally tuned timescales. The end of MIS 7 is complex, but also appears to be somewhat later than is suggested by orbitally tuned timescales, although this event is not particularly well defined in these cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrestrial organic matter (OM) in pelagic sediments is discussed with regard to depositional processes and land-sea interactions in the modern and past glacial/interglacial Equatorial Atlantic. Special emphasis is placed on a critical evaluation of different analytical approaches (C/N, Rock-Eval Pyrolysis, stable carbon isotopes, palynology, organic petrology, and selected biomarkers) which are currently used for the qualitative and quantitative assessment of terrigenous organic carbon. If binary mixing equations are used to calculate terrestrial and marine proportions of organic carbon, we consider the definition of endmember values to be most critical since these values may be biased by a great number of independent controls. A combination of geochemical methods including optical studies (organic petrology and palynology) is therefore suggested to evaluate each individual proxy. Organic geochemical analyses performed on sediments from the modern and Late Quaternary Equatorial Atlantic evidence fluctuations in eolian supply of terrigenous OM related to changes in intensity of the trade winds. Quantification of this organic fraction leads to differing proportions depending on the approach applied, i.e. the organic carbon isotopic composition or maceral analyses. Modern distribution of terrigenous OM reveals a decrease in supply towards the basin contributing less than a fifth of the total OM in pelagic areas. Organic geochemical data indicate that sedimentation in the modern northeastern Brasil Basin is affected by lateral advection of reworked OM probably from southern source areas. Glacial/interglacial deposits from the pelagic Equatorial Atlantic (ODP Site 663), covering isotopic stages 12 and 11, reveal that deposition of terrigenous OM was higher under past glacial conditions, in correspondence to generally enhanced dust fluxes. Proportions of terrigenous OM, however, never exceed 50% of the total OM according to maceral analyses. Other estimates, recently proposed by Verardo and Ruddiman (1996), are considered to be too high probably for analytical reasons. Palynological records in the Equatorial Atlantic parallel dust records. Increased portions of grass pollen suggest the admixture of C4-plant material under modern and past glacial conditions. It is therefore assumed, as one possible interpetation, that C4-plant debris has an effect on sedimentary d13Corg and might explain differences between isotopic and microscopic quantitative estimates. Using the difference between these two records, we calculate that maximum supply of C4-material remains below 20% of the total OM for the deep modern and past glacial/interglacial Equatorial Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence of porewaters from marine sediment cores from six different areas was measured. In most cases, fluorescence was affected primarily by the diagenesis of organic carbon first through sulfate reduction and subsequently by methane generation. Typically, fluorescence, dissolved organic carbon (DOC), absorbance, alkalinity, and ammonium ion concentrations correlate quite well, increasing in the upper sections of anoxic sediments and co-varying in deeper sections of these cores. The good correlation of DOC with fluorescence in the three cores in which DOC was measured indicates that fluorescence can be used to make a first order estimate of DOC concentration in anoxic porewaters. Data are consistent with a model in which labile organic matter in the sediments is broken down by sulfur reducing bacteria to low molecular weight monomers. These monomers are either remineralized to CO2 or polymerize to form dissolved, fluorescent, high molecular weight molecules. The few exceptions to this model involve hydrothermally generated hydrocarbons that are formed in situ in the Guaymas Basin or are horizontally advected along the decollement in the Nankai Trench.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first circum-East Antarctic chronology for the Holocene, based on 17 radiocarbon dates generated by the accelerator method. Marine sediments from around East Antarctica contain a consistent, high-resolution record of terrigenous (ice-proximal) and biogenic (open-marine) sedimentation during Holocene time. This record demonstrates that biogenic sedimentation beneath the open-marine environment on the continental shelf has been restricted to approximately the past 4 ka, whereas a period of terrigenous sedimentation related to grounding line advance of ice tongues and ice shelves took place between 7 and 4 ka. An earlier period of open-marine (biogenic sedimentation) conditions following the late Pleistocene glacial maximum is recognized from the Prydz Bay (Ocean Drilling Program) record between 10.7 and 7.3 ka. Clearly, the response of outlet systems along the periphery of the East Antarctic ice sheet during the mid-Holocene was expansion. This may have been a direct consequence of climate warming during an Antarctic 'Hypsithermal'. Temperature-accumulation relations for the Antarctic indicate that warming will cause a significant increase in accumulation rather than in ablation. Models that predict a positive mass balance (growth) of the Antarctic ice sheet under global warming are supported by the mid-Holocene data presented herein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use quantitative X-ray diffraction to determine the mineralogy of late Quaternary marine sediments from the West and East Greenland shelves offshore from early Tertiary basalt outcrops. Despite the similar basalt outcrop area (60 000-70 000 km**2), there are significant differences between East and West Greenland sediments in the fraction of minerals (e.g. pyroxene) sourced from the basalt outcrops. We demonstrate the differences in the mineralogy between East and West Greenland marine sediments on three scales: (1) modern day, (2) late Quaternary inputs and (3) detailed down-core variations in 10 cores from the two margins. On the East Greenland Shelf (EGS), late Quaternary samples have an average quartz weight per cent of 6.2 ± 2.3 versus 12.8 ± 3.9 from the West Greenland Shelf (WGS), and 12.02 ± 4.8 versus 1.9 ± 2.3 wt% for pyroxene. K-means clustering indicated only 9% of the samples did not fit a simple EGS vs. WGS dichotomy. Sediments from the EGS and WGS are also isotopically distinct, with the EGS having higher eNd (-18 to 4) than those from the WGS (eNd = -25 to -35). We attribute the striking dichotomy in sediment composition to fundamentally different long-term Quaternary styles of glaciation on the two basalt outcrops.