93 resultados para Lek
Resumo:
The numbers of spawning sites for Chinese sturgeon have been drastically reduced since the construction of the Gezhouba Dam across the Yangtze River. This dam has blocked migration of Chinese sturgeon to their historic spawning ground causing a significant decline of the Chinese sturgeon population. We conducted a VORTEX population viability analysis to estimate the sustainability of the population and to quantify the efficiency of current and alternative conservation procedures. The model predicted the observed decline of Chinese sturgeon, resulting from the effect of the Gezhouba Dam. These simulations demonstrated the potential interest of two conservation measures: increasing spawning area and reducing predation on sturgeon eggs. The simulations also demonstrated that the actual restocking program is not sufficient to sustain sturgeon population as the artificial reproduction program induce the loss of more wild mature adults that the recruitment expected by the artificial reproduction.
Resumo:
This study describes the current status of the small fish community in Niushan Lake in China, and examines the spatial and seasonal variations of the community in relation to key environmental factors. Based on macrophyte cover conditions, the lake was divided into three major habitat types: (1) Potamogeton maackianus habitat, (2) Potamogeton maackianus and Myriophyllum spicatum habitat, and (3) uncovered or less-covered habitat. Fish were sampled quantitatively in the three habitat types by block nets seasonally from September 2002 to August 2003. A total of 10 469 individuals from 27 fish species were caught, among which 20 species were considered as small fishes. Rhodeus ocellatus, Paracheilognathus imberbis, Pseudorasbora parva, Micropercops swinhonis and Cultrichthys erythropterus were recognized as dominant small fishes according to their abundance and occurrence. It was noted that (1) small fishes predominated the total number of fish species in the lake, which reflected to some degree the size diminution phenomenon of fish resources; (2) many small fishes had plant detritus as their food item, which was consistent with the abundance of macrophyte detritus in the lake and implied the importance of detritus in supporting small fish secondary production. Canonical correspondence analysis suggested that the spatial distributions of most small fishes were associated with complex macrophyte cover conditions. Macrophyte biomass was positively correlated with species richness, diversity index and the catch per unit of effort (CPUE) of the fish community. Water depth had no significant effects on species diversity and distribution of the small fishes. Correspondence analysis revealed a higher occurrence of the small fishes and higher abundance of individuals in summer and autumn. Seasonal length-frequency distributions of several species indicated that more larval and juvenile individuals appeared in spring and summer. This study provides some baseline information which will be essential to long-term monitoring of small fish communities in the Yangtze lakes.
Resumo:
Cross-species amplifications of microsatellite locus Spl-106, which was originally screened from the genome of shovelnose sturgeon (Scaphirhynchus platorynchus) with a perfect TAGA repeat motif, were carried out in four other species of the genera Acipenser. A total of 34 polymerase chain reaction (PCR) products representing 16 different alleles of this locus was sequenced. Sequence analysis results showed that besides the number changes of repeat units, many mutational events, such as single-base substitutions and various insertion/deletion (indels) occurred not only at species level but also at individual level, even among the different alleles within the same individual. The repeat motifs varied from perfect (TAGA)n array to perfect compound (TAAA)m (GAAA)n and perfect or imperfect compound (TAAA)m (TAGA)n (TAAA)x arrays in different species and different individuals. The evolution dynamics of this locus in sturgeons was inferred in that it may evolve from a single perfect to different perfect or imperfect compounds.
Resumo:
The largest damming project to date, the Three Gorges Dam has been built along the Yangtze River (China), the most species-rich river in the Palearctic region. Among 162 species of fish inhabiting the main channel of the upper Yangtze, 44 are endemic and are therefore under serious threat of global extinction from the dam. Accordingly, it is urgently necessary to develop strategies to minimize the impacts of the drastic environmental changes associated with the dam. We sought to identify potential reserves for the endemic species among the 17 tributaries in the upper Yangtze, based on presence/absence data for the 44 endemic species. Potential reserves for the endemic species were identified by characterizing the distribution patterns of endemic species with an adaptive learning algorithm called a "self-organizing map" (SOM). Using this method, we also predicted occurrence probabilities of species in potential reserves based on the distribution patterns of communities. Considering both SOM model results and actual knowledge of the biology of the considered species, our results suggested that 24 species may survive in the tributaries, 14 have an uncertain future, and 6 have a high probability of becoming extinct after dam filling.
Resumo:
Wydział Chemii
Resumo:
Wydział Chemii
Resumo:
Male dominance hierarchies are usually linked to relative body size and to weapon size, that is, to determinants of fighting ability. Secondary sexual characters that are not directly used as weapons could still be linked to dominance if they reveal determination or overall health and vigour and hence, indirectly, fighting ability. We studied the mating behaviour of the minnow, Phoxinus phoxinus, a cyprinid fish in which males develop breeding tubercles during the spawning season. The function of these breeding tubercles is still not clear. Using microsatellite markers, we determined male reproductive success under controlled conditions. The minnows were territorial and quickly established a dominance hierarchy at the beginning of the spawning season. Dominance was strongly and positively linked to fertilization success. Although body size and number of breeding tubercles were not significantly correlated in our sample, both large males and males with many breeding tubercles were more dominant and achieved higher fertilization success than small males or males with few tubercles. We found multimale fertilization in most clutches, suggesting that sperm competition is important in this species. Females showed behaviour that may be linked to spawning decision, that is, male dominance might not be the only determinant of male reproductive success in minnows
Resumo:
In comparison with mixed forest stands, the cultivation of pure plantations in Vietnam entails serious ecological consequences such as loss of biodiversity and higher rate of soil erosion. The economic evaluation is elaborated between pure plantations and mixed forests where the fast-growing tree species are mixed with slow growing tree species which are planted in stripes separating the segments with fast-growing tree species (Acacia sp.). For the evaluation, the input values were used from local costs of goods, services and labour. The results show that the internal rate of return is the highest in the case of pure plantation in comparison with mixed forests – 86% to 77%(first planting pattern: Acacia sp. + noble hardwood species) and 54% (second planting pattern: Acacia + Dipterocarpus sp. + Sindora sp.). The average profit per hectare and year is almost five times higher in the case of mixed stands. The first planting pattern reaches 2,650 $, the second planting pattern 2,280 $ and the pure acacia plantation only 460 $. From an economic point of view, the cultivation of mixed forests that corresponds to the principles of sustainable forestry generates a good economical profit while maintaining habitat complexity and biodiversity.
Resumo:
Durante los siglos XVII y XVIII se presentaron varias querellas ante el Tribunal de Justicia Criminal del Nuevo Reino de Granada, en las que se denunciaba que había personas que ejercían los oficios médicos sin tener títulos que los acreditaran como facultativos en las artes curativas. Por ese entonces, se creía que quienes utilizaban yerbas y conjuros como métodos terapéuticos, por lo general mujeres, debían ser juzgadas como yerbateras-envenenadoras, porque no pretendían curar sino matar a quien consumiera sus preparados. El texto establece que los procesos criminales por envenenamiento constituyen un prisma en el que convergen diferentes problemáticas del periodo colonial neogranadino, relacionadas con la salud, los oficios médicos, las enfermedades, las creencias mágico-religiosas, el ideal de mujer en la época, la delincuencia, y las dinámicas de las instituciones españolas, entre otras. De esta manera, se estudió cómo fue la relación entre los aspectos jurídicos, las leyes criminales (dictadas por la Corona) y las conductas “desviadas” (relacionadas con el crimen por envenenamiento) de los habitantes del Nuevo Reino de Granada, entre los siglos XVII y XVIII. Para ello se revistaron desde diferentes perspectivas, varios temas del mundo colonial neogranadino, relacionados con los rumores, la comidilla, los chismes y la importancia de la comunicación hablada en el virreinato; el problema de la honra, como una de las virtudes más sobresalientes de la época y las creencias de la cultura popular con relación al envenenamiento y los diferentes métodos curativos.
Resumo:
Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
An extensive statistical ‘downscaling’ study is done to relate large-scale climate information from a general circulation model (GCM) to local-scale river flows in SW France for 51 gauging stations ranging from nival (snow-dominated) to pluvial (rainfall-dominated) river-systems. This study helps to select the appropriate statistical method at a given spatial and temporal scale to downscale hydrology for future climate change impact assessment of hydrological resources. The four proposed statistical downscaling models use large-scale predictors (derived from climate model outputs or reanalysis data) that characterize precipitation and evaporation processes in the hydrological cycle to estimate summary flow statistics. The four statistical models used are generalized linear (GLM) and additive (GAM) models, aggregated boosted trees (ABT) and multi-layer perceptron neural networks (ANN). These four models were each applied at two different spatial scales, namely at that of a single flow-gauging station (local downscaling) and that of a group of flow-gauging stations having the same hydrological behaviour (regional downscaling). For each statistical model and each spatial resolution, three temporal resolutions were considered, namely the daily mean flows, the summary statistics of fortnightly flows and a daily ‘integrated approach’. The results show that flow sensitivity to atmospheric factors is significantly different between nival and pluvial hydrological systems which are mainly influenced, respectively, by shortwave solar radiations and atmospheric temperature. The non-linear models (i.e. GAM, ABT and ANN) performed better than the linear GLM when simulating fortnightly flow percentiles. The aggregated boosted trees method showed higher and less variable R2 values to downscale the hydrological variability in both nival and pluvial regimes. Based on GCM cnrm-cm3 and scenarios A2 and A1B, future relative changes of fortnightly median flows were projected based on the regional downscaling approach. The results suggest a global decrease of flow in both pluvial and nival regimes, especially in spring, summer and autumn, whatever the considered scenario. The discussion considers the performance of each statistical method for downscaling flow at different spatial and temporal scales as well as the relationship between atmospheric processes and flow variability.
Resumo:
To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.