966 resultados para Lateral rotation of the tibia
Resumo:
The present work follows a stratigraphic model for the marine Neogene of Portugal based on the definition of three main marine sedimentary cycles. Conceptually the I, II and III Neogene Cycles can be defined as 2nd order sedimentary sequences with duration ranging from 5 to 8 Ma. The I Neogene Cycle is fully represented only in the Lower Tagus Basin. Ranging from the Early Aquitanian to the Late Burdigalian the I Neogene Cycle testify a transgressive episode in the region of Lisbon and Setúbal Peninsula. Rapid lateral facies variations suggest a shallowmarine basin. This cycle ends with an important Late Burdigalian tectonic compressive event expressed by uplift of the surrounding areas and deformation affecting the Early Miocene deposits of the Arrábida Chain. The II Neogene Cycle includes thick sedimentary sequences covering Paleozoic and Mesozoic formations in the Algarve and Alvalade-Melides regions and it extends as far north as Santarém in the Lower Tagus Basin. Mainly controlled by global eustasy, it was generated by the important positive eustatic trend that characterized the Middle Miocene worldwide to which the Portuguese continental margin acted more or less passively. This cycle ended with a second and the most important compression event starting after the end of the Serravallian affecting the entire Portuguese onshore and shelf areas. This led to an important depositional hiatus of marine sediments for more than 2.5 Ma. During the Early and the Middle Tortonian occurred the clockwise rotation of the Guadalquivir Basin. The thickmarine units deposited afterwards in this basin produced a litostatic load, which seems to have induced subsidence farther west resuming the Neogene marine sedimentation in the Cacela region (Eastern Algarve), during the Late Tortonian. This marks the beginning of the III Neogene Cycle. To the north, in the Sado Basin (Alvalade-Melides region), a similar depositional sequence starts its sedimentation during the Messinian. Further north, in the Pombal-Caldas da Rainha region, marine sedimentation started during the Late Pliocene (Piacenzian). The migration in time, from south to north for the beginning of the marine sedimentation of this cycle is interpreted as reflecting a visco-elastic propagation of the deformation from the Betic chain northwards.
Resumo:
PURPOSE: Congenital venous malformations of the lower limbs represent a particular challenge for the vascular surgeon. Persistence of fetal veins is a rare malformation, and the most common is the persistence of the lateral marginal vein usually observed in patients with Klippel-Trenaunnay Syndrome. The persistence of this embryonic vein as an isolated venous malformation without the other characteristics of the Klippel-Trenaunnay Syndrome has not yet been reported. This paper describes two cases. METHODS: Two patients, a 17-year-old male patient and a 16-year-old female, have had since their birth a large venous trunk in the lateral aspect of the right leg and thigh. The limbs underwent duplex scanning and phlebography. The surgical removal of the lateral marginal vein was performed. RESULTS: Surgical treatment resulted in very good functional and aesthetic results. Follow-up at 26 months showed no evidence of varicose vein recurrence. CONCLUSIONS: To achieve good results, surgical intervention may be indicated in cases of orthopedic deformity, hemorrhage, symptomatic, and unaesthetic lesions.
Resumo:
The Epstein-Barr virus (EBV) is the etiological agent of oral hairy leukoplakia (OHL), an oral lesion with important diagnostic and prognostic value in acquired immunodeficiency disease syndrome. The two EBV genotypes, EBV-1 and EBV-2, can be distinguished by divergent gene sequences encoding the EBNA-2, 3A, 3B, and 3C proteins. The purpose of this study was to identify the EBV genotype prevalent in 53 samples of scrapings from the lateral border of the tongue of HIV-1 seropositive patients, with and without OHL, and to correlate the genotypes with presence of clinical or subclinical OHL with the clinic data collected. EBV-1 and EBV-2 were identified through PCR and Nested-PCR based on sequence differences of the EBNA-2 gene. EBV-1 was identified in the 31 samples (15 without OHL, 7 with clinical OHL and 9 with subclinical OHL), EBV-2 in 12 samples (10 without OHL, 1 with clinical and 1 subclinical OHL), and a mixed infection in 10 samples (2 without OHL, 3 with clinical and 5 with subclinical OHL). The presence of EBV-1 was higher in women, but a significant statistical result relating one the EBV genotypes to the development of OHL was not found. We conclude that the oral epithelium in HIV-1 seropositive patients can be infected by EBV-1, EBV-2 or by a mixed viral population.
Resumo:
PURPOSE: Performing total knee replacement, accurate alignment and neutral rotation of the femoral component are widely believed to be crucial for the ultimate success. Contrary to absolute bone referenced alignment, using a ligament balancing technique does not automatically rotate the femoral component parallel to the transepicondylar axis. In this context we established the hypothesis that rotational alignment of the femoral component parallel to the transepicondylar axis (0° ± 3°) results in better outcome than alignment outside of this range. METHODS: We analysed 204 primary cemented mobile bearing total knee replacements five years postoperatively. Femoral component rotation was measured on axial radiographs using the condylar twist angle (CTA). Knee society score, range of motion as well as subjective rating documented outcome. RESULTS: In 96 knees the femoral component rotation was within the range 0 ± 3° (neutral rotation group), and in 108 knees the five-year postoperative rotational alignment of the femoral component was outside of this range (outlier group). Postoperative CTA showed a mean of 2.8° (±3.4°) internal rotation (IR) with a range between 6° external rotation (ER) and 15° IR (CI 95). No difference with regard to subjective and objective outcome could be detected. CONCLUSION: The present work shows that there is a large given natural variability in optimal rotational orientation, in this study between 6° ER and 15° IR, with numerous co-factors determining correct positioning of the femoral component. Further studies substantiating pre- and postoperative determinants are required to complete the understanding of resulting biomechanics in primary TKA.
Resumo:
Résumé : L'amygdale latérale (AL) joue un .rôle essentiel dans la plasticité synaptique à la base du conditionnement de la peur. Malgré le faite que la majorité des cellules de l'AL reçoivent les afférentes nécessaires, une potentialisation dans seulement une partie d'entre elles est obligatoire afin que l'apprentissage de la peur ait lieu. Il a été montré que ces cellules expriment la forme active de CREB, et celui-ci a été associé aux cellules dites de type 'nonaccomrnodating' (nAC). Très récemment, une étude a impliqué les circuits récurrents de l'AL dans le conditionnement de la peur. Un lien entre ces deux observations n'a toutefois jamais été établi. t Nous avons utilisé un protocole in vitro de forte activation de l'AL, résultant dans l'induction de 'bursts' provenant de l'hippocampe et se propageant jusqu'à l'AL. Dans l'AL ces 'bursts' atteignent toutes les cellules et se propagent à travers plusieurs chemins. Utilisant ce protocole, nous avons, pour la première fois pu associer dans l'AL, des cellules connectées de manière récurrente avec des cellules de type nAC. Aussi bien dans ces dernières que dans les cellules de type 'accommodating' (AC), une diminution dans la transmission inhibitrice, à la fois exprimée de manière pré synaptique mais également indépendant de la synthèse de protéine a pu être observé. Au contraire, une potentialisation induite et exprimée au niveau pré synaptique ainsi que dépendante de la synthèse de protéine a pu être trouvé uniquement dans les cellules de type nAC. De plus, une hyperexcitabilité, dépendante des récepteurs NMDA a pu être observé, avec une sélection préférentielle des cellules du type nAC dans la génération de bursts. Nous avons également pu démontrer que la transformation d'un certain nombre de cellules de type AC en cellules dites nAC accompagnait cette augmentation générale de l'excitabilité de l'AL. Du faite da la grande quantité d'indices suggérant une connexion entre le système noradrénergique et les états de peur/d'anxiété, les effets d'une forte activation de l'AL sur ce dernier ont été investigués et ont révélés une perte de sa capacité de modulation du 'spiking pattern'. Finalement, des changements au niveau de l'expression d'un certain nombre de gènes, incluant celui codant pour le BDNF, a pu être trouvé à la suite d'une forte activation de l'AL. En raison du lien récemment décrit entre l'expression de la forme active de CREB et des cellules de type nAC ainsi que celui de l'implication des cellules de l'AL connectés de manière récurrente dans l'apprentissage de la peur, nos résultats nous permettent de suggérer un modèle expliquant comment la potentialisation des connections récurrentes entre cellules de type nAC pourrait être à la base de leur recrutement sélectif pendant le conditionnement de la peur. De plus, ils peuvent offrir des indices par rapport aux mécanismes à travers lesquels une sous population de neurones peut être réactivée par une stimulation externe précédemment inefficace, et induire ainsi un signal suffisamment fort pour qu'il soit transmit aux structures efférentes de l'AL. Abstract : The lateral nucleus of the amygdala (LA) is critically involved in the plasticity underlying fear-conditioned learning (Sah et al., 2008). Even though the majority of cells in the LA receive the necessary sensory inputs, potentiation in only a subset is required for fear learning to occur (Repa et al., 2001; Rumpel et al., 2005). These cells express active CREB (CAMP-responsive element-binding protein) (Han et al., 200, and this was related to the non-accommodating (nAC) spiking phenotype (Viosca et al., 2009; Zhou et al., 2009). In addition, a very recent study implicated recurrently connected cells of the LA in fear conditioned learning (Johnson et al., 2008). A link between the two observations has however never been made. In rats, we used an in vitro protocol of strong activation of the LA, resulting in bursting activity, which spread from the hippocampus to the LA. Within the LA, this activity reached all cells and spread via a multitude of pathways. Using this model, we were able to link, for the first time, recurrently connected cells in the LA with cells of the nAC phenotype. While we found a presynaptically expressed, protein synthesis independent decrease in inhibitory synaptic transmission in both nAC and accommodating (AC) cells, only nAC cells underwent a presynaptically induced and expressed, protein synthesis dependent potentiation. Moreover we observed an NMDA dependent hyperexcitability of the LA, with a preferential selection of nAC cells into burst generation. The transformation of a subset of AC cells into nAC cells accompanied this general increase in LA excitability. Given the considerable evidence suggesting a relationship between the central noradrenergic (NA) system and fear/anxiety states (Itoi, 2008), the effects of strong activation of the LA on the noradrenergic system were investigated, which revealed a loss of its modulatory actions on cell spiking patterns. Finally, we found changes in the expression levels of a number of genes; among which the one coding for $DNF, to be induced by strong activation of the LA. In view of the recently described link between nAC cells and expression of pCREB (phosphorylated cAMP-responsive element-binding protein) as well as the involvement of recurrently connected cells of the LA in fear-conditioned learning, our findings may provide a model of how potentiation of recurrent connections between nAC neurons underlies their recruitment into the fear memory trace. Additionally, they may offer clues as to the mechanisms through which a selected subset of neurons can be reactivated by smaller, previously ineffective external stimulations to respond with a sufficiently strong signal, which can be transmitted to downstream targets of the LA.
Resumo:
BACKGROUND: Accurate assessment of glenoid inclination is of interest for a variety of conditions and procedures. The purpose of this study was to develop an accurate and reproducible measurement for glenoid inclination on standardized anterior-posterior (AP) radiographs and on computed tomography (CT) images. MATERIALS AND METHODS: Three consistently identifiable angles were defined: Angle α by line AB connecting the superior and inferior glenoid tubercle (glenoid fossa) and the line identifying the scapular spine; angle β by line AB and the floor of the supraspinatus fossa; angle γ by line AB and the lateral margin of the scapula. Experimental study: these 3 angles were measured in function of the scapular position to test their resistance to rotation. Conventional AP radiographs and CT scans were acquired in extension/flexion and internal/external rotation in a range up to ±40°. Clinical study: the inter-rater reliability of all angles was assessed on AP radiographs and CT scans of 60 patients (30 with proximal humeral fractures, 30 with osteoarthritis) by 2 independent observers. RESULTS: The experimental study showed that angle α and β have a resistance to rotation of up to ±20°. The deviation from neutral position was not more than ±10°. The results for the inter-rater reliability analyzed by Bland-Altman plots for the angle β fracture group were (mean ± standard deviation) -0.1 ± 4.2 for radiographs and -0.3 ± 3.3 for CT scans; and for the osteoarthritis group were -1.2 ± 3.8 for radiographs and -3.0 ± 3.6 for CT scans. CONCLUSION: Angle β is the most reproducible measurement for glenoid inclination on conventional AP radiographs, providing a resistance to positional variability of the scapula and a good inter-rater reliability.
Resumo:
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm. The mature spermatozoon presents two axonemes of the 9 +"1" trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.
Resumo:
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm. The mature spermatozoon presents two axonemes of the 9 +"1" trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.
Resumo:
Objective: To evaluate the anatomic topographic relation between the sciatic nerve in relation to the piriform muscle and the posterior portal for the establishment of hip arthroscopy.Methods: We dissected 40 hips of 20 corpses of adult Brazilians, 17 male and three female, six black, six brown and eight white. We studied the anatomical relationship between the sciatic nerve and the piriform muscle with their variations and the distance between the lateral edge of the sciatic nerve and the posterior portal used in hip arthroscopy. We then classified the anatomical alterations found in the path of the sciatic nerve on the piriform muscle.Results: Seventeen corpses had bilateral relationship between the sciatic nerve and the piriform muscle, i.e., type A. We found the following anatomical variations: 12.5% of variant type B; and an average distance between the sciatic nerve and the portal for arthroscopy of 2.98cm. One body had type B anatomical variation on the left hip and type A on the right.Conclusion: the making of the posterior arthroscopic portal to the hip joint must be done with careful marking of the trochanter massive; should there be difficult to find it, a small surgical access is recommended. The access point to the portal should not exceed two centimeters towards the posterior superior aspect of the greater trochanter, and must be made with the limb in internal rotation of 15 degrees.
Resumo:
It has been shown that mental rotation of objects and human body parts is processed differently in the human brain. But what about body parts belonging to other primates? Does our brain process this information like any other object or does it instead maximize the structural similarities with our homologous body parts? We tried to answer this question by measuring the manual reaction time (MRT) of human participants discriminating the handedness of drawings representing the hands of four anthropoid primates (orangutan, chimpanzee, gorilla, and human). Twenty-four right-handed volunteers (13 males and 11 females) were instructed to judge the handedness of a hand drawing in palm view by pressing a left/right key. The orientation of hand drawings varied from 0º (fingers upwards) to 90º lateral (fingers pointing away from the midline), 180º (fingers downwards) and 90º medial (finger towards the midline). The results showed an effect of rotation angle (F(3, 69) = 19.57, P < 0.001), but not of hand identity, on MRTs. Moreover, for all hand drawings, a medial rotation elicited shorter MRTs than a lateral rotation (960 and 1169 ms, respectively, P < 0.05). This result has been previously observed for drawings of the human hand and related to biomechanical constraints of movement performance. Our findings indicate that anthropoid hands are essentially equivalent stimuli for handedness recognition. Since the task involves mentally simulating the posture and rotation of the hands, we wondered if "mirror neurons" could be involved in establishing the motor equivalence between the stimuli and the participants' own hands.
Resumo:
The study area is situated in NE Newfoundland between Gander Lake and the north coast and on the boundary between the Gander and Botwood tectonostratigraphic zones (Williams et al., 1974). The area is underlain by three NE trending units; the Gander Group, the Gander River Ultramafic Belt (the GRUB) and the Davidsville Group. The easternmost Gander Group consists of a thick, psammitic unit composed predominantly of psammitic schist and a thinner, mixed unit of semipelitic and pelitic schist with minor psammite. The mixed unit may stratigraphically overlie the psammitic unit or be a lateral facies equivalent of the latter. No fossils have been recovered from the Gander Group. The GRUB is a terrain of mafic and ultramafic plutonic rocks with minor pillow lava and plagiogranite. It is interpreted to be a dismembered ophiolite in thrust contact with the Gander Group. The westernmost Davidsville Group consists of a basal conglomerate, believed deposited unconformably upon the GRUB from which it was derived, and an upper unit of greywacke and slate, mostly of turbidite origin, with minor limestone and calcareous sandstone. The limestone, which lies near the base of the unit, contains Upper Llanvirn to Lower Llandeilo fossils. The Gander and Davidsville Groups display distinctly different sedimentological , structural and metamorphic histories. The Gander Group consists of quartz-rich, relatively mature sediment. It has suffered three pre-Llanvirn deformations, of which the main deformation, Dp produced a major, NE-N-facing recumbent anticline in the southern part of the study area. Middle greenschist conditions existed from D^ to D- with growth of metamorphic minerals during each dynamic and static phase. In contrast, the mineralogically immature Davidsville Group sediment contains abundant mafic and ultramafic detritus which is absent from the Gander Group. The Davidsville Group displays the effects of a single penetrative deformation with localized D_ and D_ features, all of which can be shown to postdate D_ in the Gander Group. Rotation of the flat Gander S- into a subvertical orientation near the contact with the GRUB and the Davidsville Group is believed to be a Davidsville D^ feature. Regional metamorphism in the Davidsville Group is lower greenschist with a single growth phase, MS . These sedimentological, structural and metamorphic differences between the Gander and Davidsville Groups persist even where the GRUB is absent and the two units are in contact, indicating that the tectonic histories of the Gander and Davidsville Groups are distinctly different. Structural features in the GRUB, locally the result of multiple deformations, may be the result of Gander and/or Davidsville deformations. Metamorphism is in the greenschist facies. Geochemical analyses of the pillow lava suggest that these rocks were formed in a back-arc basin. Mafic intrusives in the Gander Group appear to be the result of magraatism separate from that producing the pillow lava. The Gander Group is interpreted to be a continental rise prism deposited on the eastern margin of the Late Precambrian-Lower Paleozoic lapetus Ocean. The GRUB, oceanic crust possibly formed in a marginal basin to the west, is believed to have been thrust eastward over the Gander Group, deforming the latter, during the pre-Llanvirnian, possibly Precambrian, Ganderian Orogeny. The Middle Ordovician and younger Davidsville Group was derived from, and deposited unconformably on, this deformed terrain. Deformation of the Davidsville Group occurred during the Middle Devonian Acadian Orogeny.
Resumo:
We perform a numerical study of the evolution of a Coronal Mass Ejection (CME) and its interaction with the coronal magnetic field based on the 12 May 1997, CME event using a global MagnetoHydroDynamic (MHD) model for the solar corona. The ambient solar wind steady-state solution is driven by photospheric magnetic field data, while the solar eruption is obtained by superimposing an unstable flux rope onto the steady-state solution. During the initial stage of CME expansion, the core flux rope reconnects with the neighboring field, which facilitates lateral expansion of the CME footprint in the low corona. The flux rope field also reconnects with the oppositely orientated overlying magnetic field in the manner of the breakout model. During this stage of the eruption, the simulated CME rotates counter-clockwise to achieve an orientation that is in agreement with the interplanetary flux rope observed at 1 AU. A significant component of the CME that expands into interplanetary space comprises one of the side lobes created mainly as a result of reconnection with the overlying field. Within 3 hours, reconnection effectively modifies the CME connectivity from the initial condition where both footpoints are rooted in the active region to a situation where one footpoint is displaced into the quiet Sun, at a significant distance (≈1R ) from the original source region. The expansion and rotation due to interaction with the overlying magnetic field stops when the CME reaches the outer edge of the helmet streamer belt, where the field is organized on a global scale. The simulation thus offers a new view of the role reconnection plays in rotating a CME flux rope and transporting its footpoints while preserving its core structure.
Resumo:
The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A espermiogênese nas espécies Steindachnerina insculpta, Cyphocharax gillii, C. modestus, C. spilotus e Potamorhina altamazonica de Curimatidae é caracterizada pelo desenvolvimento lateral do flagelo, rotação do núcleo, formação excêntrica da fossa nuclear e cromatina compactada em fibras espessas. Estes espermatozóides exibem uma cabeça esférica contendo um núcleo com cromatina altamente condensada em fibras espessas com pequenas áreas eletronlúcidas, e sem acrossoma. A fossa nuclear é do tipo moderado e excêntrico, penetrada pelo complexo centriolar. A peça média é pequena, tem muitas vesículas alongadas e um curto canal citoplasmático. Mitocôndrias podem ser alongadas, ramificadas ou em forma de C, e são separadas do segmento inicial do axonema pelo canal citoplasmático. O flagelo contém a estrutura clássica do axonema (9+2) e tem um compartimento membranoso na região inicial; não possui expansões laterais (fins). Somente pequenas diferenças foram observadas entre as espécies e gêneros analisados de Curimatidae. A espermiogênese e os espermatozóides de Curimatidae têm muitas das características encontradas em quase todas as outras espécies de Characiformes. Por outro lado, a presença de um compartimento membranoso na região inicial do flagelo dos curimatídeos, uma estrutura comum nos espermatozóides de muitos cipriniformes, é desconhecida em outros characiformes. Discute-se sobre a espermiogênese e espermatozóides de Characiformes.