951 resultados para Laser treatment
Resumo:
Background. Periodontal disease is often associated with systemic diseases and is characterized by destruction of the tissues supporting the teeth. Patients using immunosuppressive drugs such as tacrolimus are among those who suffer from tissue destruction. Objective. We sought to evaluate the effects of laser and photodynamic therapies (PDT; nonsurgical) as an adjunct to scaling and rootplaning (SRP) in the treatment of corona-induced periodontitis in rats immunosuppressed with tacrolimus (Prograf).Materials and Methods. The animals were divided into 5 groups. Each groups had 6 rats. Group I, the control group, received only saline solution throughout the study period of 42 days and did not receive periodontal treatment; group II received saline solution and SRP; group III received tacrolimus (1 mg/kg per day) and was treated with SRP; group IV animals were treated identically to group III and then administered laser treatment; and in group V, the animals were treated identically to group III and then administered PDT.Results. Statistical analysis indicated decreased bone loss with the progression of time (P = .035). There was no difference between the bone loss associated with the types of treatment administered to groups I, II, and III (P > .9) or groups IV and V (P > .6). The analysis also indicated that immunosuppression was not a bone loss-determining factor.Conclusion. Laser and PDT therapies were effective as an adjunctive treatment to SRP in reducing bone loss caused by experimental periodontitis induced in animals being treated systemically with tacrolimus.
Resumo:
The aim of this study was to conduct an in vitro evaluation, by scanning electron microscopy (SEM), of the adhesion of blood components on root surfaces irradiated with Er,Cr:YSGG (2.78 mu m) or Er:YAG (2.94 mu m) laser, and of the irradiation effects on root surface morphology. Sixty samples of human teeth were previously scaled with manual instruments and divided into three groups of 20 samples each: G1 (control group) - no treatment; G2 - Er,Cr:YSGG laser irradiation; G3 - Er:YAG laser irradiation. After performing these treatments, blood tissue was applied to 10 samples of each group, whereas 10 samples received no blood tissue application. After performing the laboratory treatments, the samples were observed under SEM, and the resulting photomicrographs were classified according to a blood component adhesion scoring system and root morphology. The results were analyzed statistically (Kruskall-Wallis and Mann Whitney tests, alpha = 5%). The root surfaces irradiated with Er:YAG and Er,Cr:YSGG lasers presented greater roughness than those in the control group. Regarding blood component adhesion, the results showed a lower degree of adhesion in G2 than in G1 and G3 (G1 x G2: p = 0.002; G3 x G2: p = 0.017). The Er:YAG and Er,Cr:YSGG laser treatments caused more extensive root surface changes. The Er:YAG laser treatment promoted a greater degree of blood component adhesion to root surfaces, compared to the Er,Cr:YSGG treatment.
Resumo:
Titanium surface texture and chemistry modification successfully improves the host response and consequently the bone-to-implant contact surrounding dental implants. The aim of the present study was to investigate, using histomorphometrical-analysis, the effects of titanium surface modification by laser-ablation (Nd:YAG) followed by thin chemical deposition of HA. Forty-eight rabbits received one implant by tibiae of AS-machined (MS), laser-modified (LMS), or biomimetic hydroxyapatite-coated (HA) surface. Bone-to-implant contact (BIC) and bone area (BBT) were evaluated after 4, 8, and 12 weeks, at cortical and cancellous regions. Average BIC in the cortical region was higher (P < 0.001) on the LMS and HA implants for all periods, with no differences between LMS and HA. For the cancellous area, the LMS and HA implants showed higher (P < 0.01) BIC than MS at the initial periods. The LMS and HA showed similar values in the cortical region, but a tendency of higher values for HA in the cancellous region was observed in all periods. For the BBT, the differences were found only between HA and MS after 4 weeks in the cortical region (P < 0.05), and after 12 weeks in the cancellous area (P < 0.05). Our results showed that HA biomimetic coating preceded by laser treatment induced the contact osteogenesis and allowed the formation of a more stable boneimplant interface, even in earlier periods. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
Background: Recently, the erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser has been used for periodontal therapy. This study compared Er:YAG laser irradiation (100 mJ/pulse, 10 Hz, 12.9 J/cm(2)) with or without conventional scaling and root planing (SRP) to SRP only for the treatment of periodontal pockets affected with chronic periodontitis.Methods: Twenty-one subjects with pockets from 5 to 9 mm in non-adjacent sites were studied. In a split-mouth design, each site was randomly allocated to a treatment group: SRP and laser (SRPL), laser only (L), SRP only (SRP), or no treatment (C). The plaque index (PI), gingival index (GI), bleeding on probing (BOP), and interleukin (IL)-1 beta levels in crevicular fluid were evaluated at baseline and at 12 and 30 days postoperatively, whereas probing depth (PD), gingival recession (GR), and clinical attachment level (CAL) were evaluated at baseline and 30 days after treatment. A statistical analysis was conducted (P<0.05).Results: Twelve days postoperatively, the PI decreased for SRPL and SRP groups (P<0.05); the GI increased for L, SRP, and C groups but decreased for the SRPL group (P<0.05); and BOP decreased for SRPL, L, and SRP groups (P<0.01). Thirty days postoperatively, BOP decreased for treated groups and was lower than the C group (P<0.05). PD decreased in treated groups (P<0.001), and differences were found between SRPL and C groups (P<0.05). CAL gain was significant only for the SRP group (P<0.01). GR increased for SRPL and L groups (P<0.05). No difference in IL-1 beta was detected among groups and periods.Conclusion: Er:YAG laser irradiation may be used as an adjunctive aid for the treatment of periodontal pockets, although a significant CAL gain was observed with SRP alone and not with laser treatment.
Resumo:
The influence of daily energy doses of 0.03, 0.3 and 0.9 J of He-Ne laser irradiation on the repair of surgically produced tibia damage was investigated in Wistar rats. Laser treatment was initiated 24 h after the trauma and continued daily for 7 or 14 days in two groups of nine rats (n=3 per laser dose and period). Two control groups (n=9 each) with injured tibiae were used. The course of healing was monitored using morphometrical analysis of the trabecular area. The organization of collagen fibers in the bone matrix and the histology of the tissue were evaluated using Picrosirius-polarization method and Masson's trichrome. After 7 days, there was a significant increase in the area of neoformed trabeculae in tibiae irradiated with 0.3 and 0.9 J compared to the controls. At a daily dose of 0.9 J (15 min of irradiation per day) the 7-day group showed a significant increase in trabecular bone growth compared to the 14-day group. However, the laser irradiation at the daily dose of 0.3 J produced no significant decrease in the trabecular area of the 14-day group compared to the 7-day group, but there was significant increase in the trabecular area of the 15-day controls compared to the 8-day controls. Irradiation increased the number of hypertrophic osteoclasts compared to non-irradiated injured tibiae (controls) on days 8 and 15. The Picrosirius-polarization method revealed bands of parallel collagen fibers (parallel-fibered bone) at the repair site of 14-day-irradiated tibiae, regardless of the dose. This organization improved when compared to 7-day-irradiated tibiae and control tibiae. These results show that low-level laser therapy stimulated the growth of the trabecular area and the concomitant invasion of osteoclasts during the first week, and hastened the organization of matrix collagen (parallel alignment of the fibers) in a second phase not seen in control, non-irradiated tibiae at the same period. The active osteoclasts that invaded the regenerating site were probably responsible for the decrease in trabecular area by the fourteenth day of irradiation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Objective: This study aims to investigate the effects of low-level laser therapy (LLLT) on muscle regeneration. For this purpose, the anterior tibialis muscle of 48 male Wistar rats received AlGaInP laser treatment (785 nm) after surgically-induced injury.Background Data: Few studies have been conducted on the effects of LLLT on muscle regeneration at different irradiation doses.Materials and Methods: The animals were randomized into four groups: uninjured rats (UN); uninjured and laser-irradiated rats (ULI); injured rats (IN); and injured and laser-irradiated rats (ILI). The direct contact laser treatment was started 24 h after surgery. An AlGaInP diode laser emitting 75 mW of continuous power at 785 nm was used for irradiation. The laser probe was placed at three treatment points to deliver 0.9 J per point, for a total dose of 2.7 J per treatment session. The animals were euthanized after treatment sessions 1, 2, and 4. Mounted sections were stained with hematoxylin and eosin and used for quantitative morphological analysis, in which the number of leukocytes and fibroblasts were counted over an area of 4480 mu m(2). The data were statistically analyzed by analysis of variance (ANOVA) and the Bonferroni t-test.Results: Quantitative data showed that the number of both polymorphonuclear and mononuclear leukocytes in the inflammatory infiltrate at the injury site was smaller in the ILI(1), ILI(2), and ILI(4) subgroups compared with their respective control subgroups (IN(1), IN(2), and IN(4)) for sessions 1, 2, and 4, respectively (p < 0.05). on the other hand, the number of fibroblasts increased after the fourth treatment session (p < 0.05). With regard to the regeneration of muscle fibers following injury, only after the fourth treatment session was it possible to find muscle precursor cells such as myoblasts and some myotubes in the ILI(4) subgroup.Conclusion: During the acute inflammatory phase, the AlGaInP laser treatment was found to have anti-inflammatory effects, reducing the number of leukocytes at the injury site and accelerating the regeneration of connective tissue.
Resumo:
Objective: To study the effect of an 830-nm gallium-aluminum-arsenic (GaAlAs) diode laser at two different energy densities (5 and 15 J/cm(2)) on the epiphyseal cartilage of rats by evaluating bone length and the number of chondrocytes and thickness of each zone of the epiphyseal cartilage. Background Data: Few studies have been conducted on the effects of low-level laser therapy on the epiphyseal cartilage at different irradiation doses. Materials and Methods: A total of 30 male Wistar rats with 23 days of age and weighing 90 g on average were randomly divided into 3 groups: control group (CG, no stimulation), G5 group (energy density, 5 J/cm(2)), and G15 group (energy density, 15 J/cm(2)). Laser treatment sessions were administered every other day for a total of 10 sessions. The animals were killed 24 h after the last treatment session. Histological slides of the epiphyseal cartilage were stained with hematoxylin-eosin (HE), photographed with a Zeiss photomicroscope, and subjected to histometric and histological analyses. Statistical analysis was performed using one-way analysis of variance followed by Tukey's post hoc test. All statistical tests were performed at a significance level of 0.05. Results: Histological analysis and x-ray radiographs revealed an increase in thickness of the epiphyseal cartilage and in the number of chondrocytes in the G5 and G15 groups. Conclusion: The 830-nm GaAlAs diode laser, within the parameters used in this study, induced changes in the thickness of the epiphyseal cartilage and increased the number of chondrocytes, but this was not sufficient to induce changes in bone length.
Resumo:
The aim of this work is to evaluate the effect of surface treatment with Er:YAG and Nd:YAG lasers on resin composite bond strength to recently bleached enamel. In this study, 120 bovine incisors were distributed into two groups: group C: without bleaching treatment; group B: bleached with 35% hydrogen peroxide. Each group was divided into three subgroups: subgroup N: without laser treatment; subgroup Nd: irradiation with Nd:YAG laser; subgroup Er: irradiation with Er:YAG laser. The adhesive system (Adper Single Bond 2) was then applied and composite buildups were constructed with Filtek Supreme composite. The teeth were sectioned to obtain enamel-resin sticks (1 x 1 mm) and submitted to microtensile bond testing. The data were statistically analyzed by the ANOVA and Tukey tests. The bond strength values in the bleached control group (5.57 MPa) presented a significant difference in comparison to the group bleached and irradiated with Er:YAG laser (13.18 MPa) or Nd:YAG (25.67 MPa). The non-bleached control group presented mean values of 30.92 MPa, with statistical difference of all the others groups. The use of Nd:YAG and Er:YAG lasers on bleached specimens was able to improve the bond strengths of them.
Resumo:
Today's scientific interest in tissue engineering for organ transplantations and regeneration from stem cells, allied with recent observations on biostimulation of tissues and cells by laser radiation, stands as a strong motivation for the present work, in which we examine the effects of the low power laser radiation onto planarians under regenerative process. To investigate those effects, a number of 60 amputated worms were divided in three study groups: a control group and two other groups submitted to daily 1 and 3 min long laser treatment sections at similar to 910 W/m(2) power density. A 685 nm diode laser with 35 mW optical power was used. Samples were sent to histological analysis at the 4th, the 7th and the 15th (lays after amputation. A remarkable increase in stem cells counts for the fourth day of regeneration was observed when the regenerating worms was stimulated by the laser radiation. Our findings encourage further research works on the influence of optical radiation onto stem cells and tissue regeneration. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Introduction Oral mucositis (OM) is a significant early complication of hematopoietic cell transplantation (HCT). This phase III randomized double-blind placebo-controlled study was designed to compare the ability of 2 different low level GaAlAs diode lasers (650 nm and 780 nm) to prevent oral mucositis in HCT patients conditioned with chemotherapy or chemoradiotherapy.Materials and methods Seventy patients were enrolled and randomized into 1 of 3 treatment groups: 650 nm laser, 780 nm laser or placebo. All active laser treatment patients received daily direct laser treatment to the lower labial mucosa, right and left buccal mucosa, lateral and ventral surfaces of the tongue, and floor of mouth with energy densities of 2 J/cm(2). Study treatment began on the first day of conditioning and continued through day +2 post HCT. Mucositis and oral pain was measured on days 0, 4, 7, 11, 14, 18, and 21 post HCT.Results the 650 nm wavelength reduced the severity of oral mucositis and pain scores. Low level laser therapy was well-tolerated and no adverse events were noted.Discussion While these results are encouraging, further study is needed to truly establish the efficacy of this mucositis prevention strategy. Future research needs to determine the effects of modification of laser parameters (e.g., wavelength, fluence, repetition rate of energy delivery, etc.) on the effectiveness of LLE laser to prevent OM.
Resumo:
The aim of the present study was to determine the action of AsGA laser irradiation on bone repair in the tibia of osteopenic rats. The animals were randomly divided into eight experimental groups according to the presence of ovarian hormone (sham group) or the absence of the hormone (OVX group), as well as being irradiated or non-irradiated. Low-level 904-nm laser (50 mJ/cm(2)) accelerated the repair process of osteopenic fractures, especially in the initial phase of bone regeneration.Introduction The development of new techniques to speed the process of bone repair has provided significant advances in the treatment of fractures. Some attention recently focused on the effects of biostimulation on bone.Methods Forty-eight adult rats were randomly divided into eight experimental groups (six animals in each group) according to the presence of ovarian hormone (sham group) or absence of the hormone (ovariectomized (OVX) group) as well as being irradiated or non-irradiated. For the application of low-level laser therapy, the animals were anesthetized with one third of the dose sufficient to immobilize the animal and irradiated with AsGa laser (904 nm, 50 mJ/cm(2) for 2s, point form and in contact). The control animals received the same type of manipulation as the irradiated animals, but with the laser turned off. Half of the animals were killed 7 days following the confection of the bone defect, and the other half were killed 21 days after the surgery. After complete demineralization, the tibias were cut cross-sectionally in the central region of the bone defect and embedded in paraffin blocks. The blocks were then cut in semi-seriated slices and stained with hematoxylin and eosin.Results There was new bone formation in the animals in the OVX group with laser treatment killed after 7 days (p<0.001). The lowest percentage of bone formation was observed in the OVX without laser killed after 7 days (p>0.05). All animals killed after 21 days exhibited linear closure of the lesion.Conclusion Low-level 904-nm laser (50 mJ/cm(2)) accelerated the repair process of osteopenic fractures, especially in the initial phase of bone regeneration.
Resumo:
The influence of He-Ne laser radiation on the formation of new blood vessels in the bone marrow compartment of a regenerating area of the mid-cortical diaphysis of the tibiae of young adult rats was studied. A small hole was surgically made with a dentistry burr in the tibia and the injured area received a daily laser therapy over 7 or 14 days transcutaneously starting 24 h from surgery. Incident energy density dosages of 31.5 and 94.5 Jcm-2 were applied during the period of the tibia wound healing investigated. Light microscopic examination of histological sections of the injured area and quantification of the newly-formed blood vessels were undertaken. Low-level energy treatment accelerated the deposition of bone matrix and histological characteristics compatible with an active recovery of the injured tissue. He-Ne laser therapy significantly increased the number of blood vessels after 7 days irradiation at an energy density of 94.5 Jcm-2, but significantly decreased the number of vessels in the 14-day irradiated tibiae, independent of the dosage. These effects were attributed to laser treatment, since no significant increase in blood vessel number was detected between 8 and 15 non-irradiated control tibiae. Molecular mechanisms involved in low-level laser therapy of angiogenesis in post-traumatic bone regeneration needs further investigation.
Resumo:
Laser-assisted hatching is little documented in the literature regarding its efficacy in cryopreserved-thawed (CT) embryo transfer cycles. The aim of the present study was to evaluate in a randomized manner the efficacy of thinning one quarter of the zona pellucida of CT embryos to a depth of 50-80% of the original thickness, via laser treatment (the qLZT-AH procedure), in improving implantation and pregnancy rates. Two populations were studied: population I, patients who had all their supernumerary embryos cryopreserved, regardless of their morphology, and population II, patients at risk of ovarian hyperstimulation syndrome who had all their embryos cryopreserved. Artificial and natural protocols were used for the embryo transfers. A total of 350 laser-thinned CT embryos were compared with 352 intact zona embryos. No difference in implantation or pregnancy rate was found after using qLZT-AH in either population. These findings suggest that qLZT-AH should not be routinely performed in cryopreserved embryo programmes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)