930 resultados para Laser scanning display
Resumo:
Zusammenfassung Mittels Fluoreszenzfarbstoffen können Strukturen sichtbar gemacht werden, die auf kon-ventionellem Weg nicht, oder nur schwer darzustellen sind. Besonders in Kombination mit der Konfokalen Laser Scanning Mikroskopie eröffnen sich neue Wege zum spezifischen Nachweis unterschiedlichster Komponenten biologischer Proben und gegebenenfalls deren dreidimensionale Widergabe.Die Visualisierung des Proteinanteils des Zahnhartgewebes kann mit Hilfe chemisch kopplungsfähiger Fluorochrome durchgeführt werden. Um zu zeigen, daß es sich bei dieser Markierung nicht um unspezifische Adsorption des Farbstoffes handelt, wurde zur Kontrolle die Proteinkomponente der Zahnproben durch enzymatischen Verdau beseitigt. Derartig behandelte Präparate wiesen eine sehr geringe Anfärbbarkeit auf.Weiterführend diente diese enzymatische Methode als Negativkontrolle zum Nachweis der Odontoblastenfortsätze im Dentin bzw. im Bereich der Schmelz-Dentin-Grenze. Hiermit konnte differenziert werden zwischen reinen Reflexionsbildern der Dentinkanäle und den Zellausläufern deren Membranen gezielt durch lipophile Fluoreszenzfarbstoffe markiert wurden.In einem weiteren Ansatz konnte gezeigt werden, daß reduzierte und daher nichtfluoreszente Fluoresceinabkömmlinge geeignet sind, die Penetration von Oxidationsmitteln (hier H2O2) in den Zahn nachzuweisen. Durch Oxidation dieser Verbindungen werden fluoreszierende Produkte generiert, die den Nachweis lieferten, daß die als Zahnbleichmittel eingesetzten Mittel rasch durch Schmelz und Dentin bis in die Pulpahöhle gelangen können.Die Abhängigkeit der Fluoreszenz bestimmter Fluorochrome von deren chemischer Um-gebung, im vorliegenden Fall dem pH-Wert, sollte eingesetzt werden, um den Säuregrad im Zahninneren fluoreszenzmikroskopisch darzustellen. Hierbei wurde versucht, ein ratio-metrisches Verfahren zu entwickeln, mit dem die pH-Bestimmung unter Verwendung eines pH-abhängigen und eines pH-unabhängigen Fluorochroms erfolgt. Diese Methode konnte nicht für diese spezielle Anwendung verifiziert werden, da Neutralisationseffekte der mineralischen Zahnsubstanz (Hydroxylapatit) die pH-Verteilung innerhalb der Probe beeinflußen. Fluoreszenztechniken wurden ebenfalls ergänzend eingesetzt zur Charakterisierung von kovalent modifizierten Implantatoberflächen. Die, durch Silanisierung von Titantestkörpern mit Triethoxyaminopropylsilan eingeführten freien Aminogruppen konnten qualitativ durch den Einsatz eines aminspezifischen Farbstoffes identifiziert werden. Diese Art der Funktionalisierung dient dem Zweck, Implantatoberflächen durch chemische Kopplung adhäsionsvermittelnder Proteine bzw. Peptide dem Einheilungsprozeß von Implantaten in den Knochen zugänglicher zu machen, indem knochenbildende Zellen zu verbessertem Anwachsverhalten stimuliert werden. Die Zellzahlbestimmung im Adhäsionstest wurde ebenfalls mittels Fluoreszenzfarbstoffen durchgeführt und lieferte Ergebnisse, die belegen, daß die durchgeführte Modifizierung einen günstigen Einfluß auf die Zelladhäsion besitzt.
Resumo:
The aim of this work is to measure the stress inside a hard micro object under extreme compression. To measure the internal stress, we compressed ruby spheres (a-Al2O3: Cr3+, 150 µm diameter) between two sapphire plates. Ruby fluorescence spectrum shifts to longer wavelengths under compression and can be related to the internal stress by a conversion coefficient. A confocal laser scanning microscope was used to excite and collect fluorescence at desired local spots inside the ruby sphere with spatial resolution of about 1 µm3. Under static external loads, the stress distribution within the center plane of the ruby sphere was measured directly for the first time. The result agreed to Hertz’s law. The stress across the contact area showed a hemispherical profile. The measured contact radius was in accord with the calculation by Hertz’s equation. Stress-load curves showed spike-like decrease after entering non-elastic phase, indicating the formation and coalescence of microcracks, which led to relaxing of stress. In the vicinity of the contact area luminescence spectra with multiple peaks were observed. This indicated the presence of domains of different stress, which were mechanically decoupled. Repeated loading cycles were applied to study the fatigue of ruby at the contact region. Progressive fatigue was observed when the load exceeded 1 N. As long as the load did not exceed 2 N stress-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus. Once the load exceeded 2 N, periodical spike-like decreases of the stress could be observed, implying a “memory effect” under repeated loading cycles. Vibration loading with higher frequencies was applied by a piezo. Redistributions of intensity on the fluorescence spectra were observed and it was attributed to the repopulation of the micro domains of different elasticity. Two stages of under vibration loading were suggested. In the first stage continuous damage carried on until certain limit, by which the second stage, e.g. breakage, followed in a discontinuous manner.
Resumo:
Understanding and controlling the mechanism of the diffusion of small molecules, macromolecules and nanoparticles in heterogeneous environments is of paramount fundamental and technological importance. The aim of the thesis is to show, how by studying the tracer diffusion in complex systems, one can obtain information about the tracer itself, and the system where the tracer is diffusing. rnIn the first part of my thesis I will introduce the Fluorescence Correlation Spectroscopy (FCS) which is a powerful tool to investigate the diffusion of fluorescent species in various environments. By using the main advantage of FCS namely the very small probing volume (<1µm3) I was able to track the kinetics of phase separation in polymer blends at late stages by looking on the molecular tracer diffusion in individual domains of the heterogeneous structure of the blend. The phase separation process at intermediate stages was monitored with laser scanning confocal microscopy (LSCM) in real time providing images of droplet coalescence and growth. rnIn a further project described in my thesis I will show that even when the length scale of the heterogeneities becomes smaller than the FCS probing volume one can still obtain important microscopic information by studying small tracer diffusion. To do so, I will introduce a system of star shaped polymer solutions and will demonstrate that the mobility of small molecular tracers on microscopic level is nearly not affected by the transition of the polymer system to a “glassy” macroscopic state. rnIn the last part of the thesis I will introduce and describe a new stimuli responsive system which I have developed, that combines two levels of nanoporosity. The system is based on poly-N-isopropylacrylamide (PNIPAM) and silica inverse opals (iOpals), and allows controlling the diffusion of tracer molecules. rn
Resumo:
A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.
Resumo:
La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.
Resumo:
Canonical Correlation Analysis for Interpreting Airborne Laser Scanning Metrics along the Lorenz Curve of Tree Size Inequality
Resumo:
The purpose of this study was to compare a number of state-of-the-art methods in airborne laser scan- ning (ALS) remote sensing with regards to their capacity to describe tree size inequality and other indi- cators related to forest structure. The indicators chosen were based on the analysis of the Lorenz curve: Gini coefficient ( GC ), Lorenz asymmetry ( LA ), the proportions of basal area ( BALM ) and stem density ( NSLM ) stocked above the mean quadratic diameter. Each method belonged to one of these estimation strategies: (A) estimating indicators directly; (B) estimating the whole Lorenz curve; or (C) estimating a complete tree list. Across these strategies, the most popular statistical methods for area-based approach (ABA) were used: regression, random forest (RF), and nearest neighbour imputation. The latter included distance metrics based on either RF (NN–RF) or most similar neighbour (MSN). In the case of tree list esti- mation, methods based on individual tree detection (ITD) and semi-ITD, both combined with MSN impu- tation, were also studied. The most accurate method was direct estimation by best subset regression, which obtained the lowest cross-validated coefficients of variation of their root mean squared error CV(RMSE) for most indicators: GC (16.80%), LA (8.76%), BALM (8.80%) and NSLM (14.60%). Similar figures [CV(RMSE) 16.09%, 10.49%, 10.93% and 14.07%, respectively] were obtained by MSN imputation of tree lists by ABA, a method that also showed a number of additional advantages, such as better distributing the residual variance along the predictive range. In light of our results, ITD approaches may be clearly inferior to ABA with regards to describing the structural properties related to tree size inequality in for- ested areas.
Resumo:
"This activity was supported by the Defense Advanced Research Projects Agency and the National Bureau of Standards."
Resumo:
The project demonstrates the use of modern technologies for preservation and presentation of the cultural and historical heritage. The idea is a database of cultural and historical heritage sites to be created applying three dimensional laser scanning technology and a combination of geodetic and photogrammetric methods and shooting techniques. For the purposes of carrying out this project, we have focused on some heritage sites in the central part of Sofia. We decided to include these particular buildings because of the fact that there is hardly another city in the world where within a radius of 400 m are located four temples of different religions - Jewish, Muslim, Orthodox and Catholic. In the recent years, preservation of cultural heritage has been increasingly linked to objectives of sustainable development. Today, it has become clear that cultural heritage is also an economic resource that should be used for further economic development (through compulsory preservation of its authentic cultural values). There has been a more active public debate on the role of cultural heritage, regarding the following topics: improving the quality of life through development of cultural tourism, leading to an increase of the employment rate, constantly improving the business climate, etc. Cultural heritage preservation is becoming one of the priority objectives of the urban development policy. The focus has been shifted to new ways of preservation, mainly combinations of sophisticated technological solutions and their application for the purposes of preservation and dissemination of the cultural heritage.
Resumo:
The training of Irish soldiers for service in the British Army during the First World War required the establishment of training camps across the island, such as at Shane’s Castle Estate, close to Randalstown in County Antrim, Northern Ireland. The camp saw active use from 1914 to 1918 but after the war it was demilitarised and returned to use as farmland. Archaeological investigations have revealed that earthwork traces of the camp can still be identified in the modern landscape. Comparison of a map of the camp from 1915, Airborne Laser Scanning data and aerial photographs has enabled the footprint of the camp to be re-established, while also helping to identify the location of specific elements such as the remains of barrack huts, stores, mess halls and officers’ quarters.
Resumo:
Laser scanning is a terrestrial laser-imaging system that creates highly accurate three-dimensional images of objects for use in standard computer-aided design software packages. This report describes results of a pilot study to investigate the use of laser scanning for transportation applications in Iowa. After an initial training period on the use of the scanner and Cyclone software, pilot tests were performed on the following projects: intersection and railroad bridge for training purposes; section of highway to determine elevation accuracy and pair of bridges to determine level of detail that can be captured; new concrete pavement to determine smoothness; bridge beams to determine camber for deck-loading calculations; stockpile to determine volume; and borrow pit to determine volume. Results show that it is possible to obtain 2-6 mm precision with the laser scanner as claimed by the manufacturer compared to approximately one-inch precision with aerial photogrammetry using a helicopter. A cost comparison between helicopter photogrammetry and laser scanning showed that laser scanning was approximately 30 percent higher in cost depending on assumptions. Laser scanning can become more competitive to helicopter photogrammetry by elevating the scanner on a boom truck and capturing both sides of a divided roadway at the same time. Two- and three-dimensional drawings were created in MicroStation for one of the scanned highway bridges. It was demonstrated that it is possible to create such drawings within the accuracy of this technology. It was discovered that a significant amount of time is necessary to convert point cloud images into drawings. As this technology matures, this task should become less time consuming. It appears that laser scanning technology does indeed have a place in the Iowa Department of Transportation design and construction toolbox. Based on results from this study, laser scanning can be used cost effectively for preliminary surveys to develop TIN meshes of roadway surfaces. It also appears that this technique can be used quite effectively to measure bridge beam camber in a safer and quicker fashion compared to conventional approaches. Volume calculations are also possible using laser scanning. It seems that measuring quantities of rock could be an area where this technology would be quite beneficial since accuracy is more important with this material compared to soil. Other applications for laser scanning could include developing as-built drawings of historical structures such as the bridges of Madison County. This technology could also be useful where safety is a concern such as accurately measuring the surface of a highway active with traffic or scanning the underside of a bridge damaged by a truck. It is recommended that the Iowa Department of Transportation initially rent the scanner when it is needed and purchase the software. With time, it may be cost justifiable to purchase the scanner as well. Laser scanning consultants can be hired as well but at a higher cost.
Resumo:
This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
Resumo:
Band-edge liquid crystal lasers are of interest for a number of applications including laser projection displays. Herein, we demonstrate simultaneous red-green-blue lasing from a single liquid crystal sample by creating a two-dimensional laser array fabricated from dye-doped chiral nematic liquid crystals. By forming a pitch gradient across the cell, and optically pumping the sample using a lenslet array, a polychromatic laser array can be observed consisting simultaneously of red-green-blue colors. Specifically, the two-dimensional polychromatic array could be used to produce a laser-based display, with low speckle and wide color gamut, whereby no complex fabrication procedure is required to generate the individual 'pixels'.