877 resultados para LOWER EXTREMITY
Resumo:
The authors describe the case of a 43-year-old man with a right-leg knee amputation performed 14 years prior. He presented to hospital with dyspnea. A pulmonary embolism was detected. A Doppler ultrasound test showed deep vein thrombosis (DVT), which affected the stump of the amputated limb. When a pulmonary embolism is detected in a patient with an amputated lower limb, an exploration of the stump should be performed to rule out this uncommon complication.
Resumo:
Background Lower extremity amputation results in significant global morbidity and mortality. Australia appears to have a paucity of studies investigating lower extremity amputation. The primary aim of this retrospective study was to investigate key conditions associated with lower extremity amputations in an Australian population. Secondary objectives were to determine the influence of age and sex on lower extremity amputations, and the reliability of hospital coded amputations. Methods: Lower extremity amputation cases performed at the Princess Alexandra Hospital (Brisbane, Australia) between July 2006 and June 2007 were identified through the relevant hospital discharge dataset (n = 197). All eligible clinical records were interrogated for age, sex, key condition associated with amputation, amputation site, first ever amputation status and the accuracy of the original hospital coding. Exclusion criteria included records unavailable for audit and cases where the key condition was unable to be determined. Chi-squared, t-tests, ANOVA and post hoc tests were used to determine differences between groups. Kappa statistics were used to measure reliability between coded and audited amputations. A minimum significance level of p < 0.05 was used throughout. Results: One hundred and eighty-six cases were eligible and audited. Overall 69% were male, 56% were first amputations, 54% were major amputations, and mean age was 62 ± 16 years. Key conditions associated included type 2 diabetes (53%), peripheral arterial disease (non-diabetes) (18%), trauma (8%), type 1 diabetes (7%) and malignant tumours (5%). Differences in ages at amputation were associated with trauma 36 ± 10 years, type 1 diabetes 52 ± 12 years and type 2 diabetes 67 ± 10 years (p < 0.01). Reliability of original hospital coding was high with Kappa values over 0.8 for all variables. Conclusions: This study, the first in over 20 years to report on all levels of lower extremity amputations in Australia, found that people undergoing amputation are more likely to be older, male and have diabetes. It is recommended that large prospective studies are implemented and national lower extremity amputation rates are established to address the large preventable burden of lower extremity amputation in Australia.
Resumo:
Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.
Resumo:
Soft tissue sarcomas (STS) are rare tumors of soft tissue occurring most frequently in the extremities. Modern treatment of extremity STS is based on limb-sparing surgery combined with radiotherapy. To prevent local recurrence, a healthy tissue margin of 2.5 cm around the resected tumor is required. This results in large defects of soft tissue and bone, necessitating the use of reconstructive surgery to achieve wound closure. When local or pedicled soft tissue flaps are unavailable, reconstruction with free flaps is used. Free flaps are elevated at a distant site, and have their blood flow restored at the recipient site through microvascular anastomosis. When limb-sparing surgery is made impossible, amputation is the only option. Proximal amputation such as forequarter amputation (FQA) causes considerable morbidity, but is nevertheless warranted for carefully selected patients for cure or palliation. 116 patients treated in 1985 - 2006 were included in the study. Of these, 93 patients treated with limb-sparing surgery and microvascular reconstructive surgery after resection of extremity STS. 25 patients who underwent FQA were also included. Patients were identified and their medical records retrospectively reviewed. In all, 105 free flap procedures were performed for 103 patients. A total of 95 curatively treated STS patients were included in survival analysis. The latissimus dorsi, used in 56% of cases, was the most frequently used free flap. Free flap success rate was 96%. There were 9% microvascular anastomosis complications and 15% wound complications. For curatively treated STS patients, local recurrence-free survival at 5 years was 73.1%, metastasis-free survival 58.3%, and overall disease-specific survival 68.9%. Functional results were good, with 75% of patients regaining normal or near-normal function after lower extremity, and 55% after upper extremity STS resection. Among curatively treated forequarter amputees, 5-year disease-free survival was 44%. In the palliatively treated group median time until disease death was 14 months. Microvascular reconstruction after extremity soft tissue sarcoma resection is safe and reliable, and produces well-healing wounds allowing early oncological treatment. Oncological outcome after these procedures is comparable to that of other extremity sarcoma patients. Functional results are generally good. Forequarter amputation is a useful treatment option for soft tissue tumors of the shoulder girdle and proximal upper extremity. When free flap coverage of extended forequarter amputation is required, the preferable flap is a fillet flap from the amputated extremity. Acceptable oncological outcome is achieved for curatively treated FQA patients. In the palliatively treated patient considerable periods of increased quality of life can be achieved.
Resumo:
The double pulley equipment was tested on ten male volunteers during contraction of the semitendinosus and biceps femoris (caput longum) muscles in the following movements of the lower limbs: 1) hip extension with extended knee and erect trunk, 2) hip extension with flexed knee and erect trunk, 3) hip extension with flexed knee and erect trunk, 3) hip extension with extended knee and inclined trunk, 5) hip abduction along the midline, 7) hip abduction with extension beyond the midline, 8) adduction with hip flexion beyond the midline, 8) adduction with hip flexion beyond the midline, and 9) adduction with hip extension beyond the midline. The myoelectric signals were taken up by Lec Tec surface electrodes connected to a 6-channel Lynx electromyographic signal amplifier coupled with a computer equipped with a model CAD 10/26 analogue digital conversion board and with a specific software for signal recording and analysis. The semitendinosus and biceps femoris muscles presented the highest potentials in movements 1; 2; 7, 8 and 9, whereas the potentials in the remaining movements were negligible. The pattern of activity of the semitendinosus and the biceps femoris was similar in exercises 1, 2, 3, 4 and 8. The potentials of the semitendinosus prevailed in movements 5, 6 and 7, and the strongest potentials observed in movement 9 were those of the biceps femoris.
Resumo:
Objective: To examine the influence of a preventative training program (PTP) on sagittal plane kinematics during different landing tasks and vertical jump height (VJH) in males. Design: Six weeks prospective exercise intervention. Participants: Fifteen male volleyball athletes (13 ± 0.7 years, 1.70 ± 0.12 m, 60 ± 12 kg). Interventions: PTP consisting of plyometric, balance and core stability exercises three times per week for six weeks. Bilateral vertical jumps with double leg (DL) and single leg (SL) landings were performed to measure the effects of training. Main outcome measurements: Kinematics of the knee and hip before and after training and VJH attained during both tasks after training. The hypothesis was that the PTP would produce improvements in VJH, but would not generate great changes in biomechanical behavior. Results: The only change identified for the SL was the longest duration of landing, which represents the time spent from initial ground contact to maximum knee flexion, after training, while increased angular displacement of the knee was observed during DL. The training did not significantly alter the VJH in either the SL (difference: 2.7 cm) or the DL conditions (difference: 3.5 cm). Conclusions: Despite the PTP's effectiveness in inducing some changes in kinematics, the changes were specific for each task, which highlights the importance of the specificity and individuality in selecting prevention injury exercises. Despite the absence of significant increases in the VJH, the absolute differences after training showed increases corroborating with the findings of statistically powerful studies that compared the results with control groups. The results suggest that short-term PTPs in low risk young male volleyball athletes may enhance performance and induce changes in some kinematic parameters. © 2012 Elsevier Ltd.
Resumo:
BALDON, R. D. M., D. F. M. LOBATO, L. P. CARVALHO, P. Y. L. WUN, P. R. P. SANTIAGO, and F. V. SERRAO. Effect of Functional Stabilization Training on Lower Limb Biomechanics in Women. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 135-145, 2012. Purpose: This study aimed to verify the effects of functional stabilization training on lower limb kinematics, functional performance, and eccentric hip and knee torques. Methods: Twenty-eight women were divided into a training group (TG; n = 14), which carried out the functional stabilization training during 8 wk, and a control group (CG; n = 14), which carried out no physical training. The kinematic assessment of the lower limb was performed during a single-leg squat, and the functional performance was evaluated by way of the single-leg triple hop and the timed 6-m single-leg hop tests. The eccentric hip abductor, adductor, lateral rotator, medial rotator, and the knee flexor and extensor torques were measured using an isokinetic dynamometer. Results: After 8 wk, the TG significantly reduced the values for knee abduction (from -6.86 degrees to 1.49 degrees), pelvis depression (from -10.21 degrees to -7.86 degrees) and femur adduction (from 7.08 degrees to 5.19 degrees) as well as increasing the excursion of femur lateral rotation (from -0.55 degrees to -3.67 degrees). Similarly, the TG significantly increased the values of single-leg triple hop (from 3.52 to 3.92 m) and significantly decreased the values of timed 6-m single-leg hop tests (from 2.43 to 2.14 s). Finally, the TG significantly increased the eccentric hip abductor (from 1.31 to 1.45 N center dot m center dot kg(-1)), hip lateral rotator (from 0.75 to 0.91 N center dot m center dot kg(-1)), hip medial rotator (from 1.45 to 1.66 N center dot m center dot kg(-1)), knee flexor (from 1.43 to 1.55 N center dot m center dot kg(-1)), and knee extensor (from 3.46 to 4.40 N center dot m center dot kg(-1)) torques. Conclusions: Strengthening of the hip abductor and lateral rotator muscles associated with functional training improves dynamic lower limb alignment and increases the strength and functional performance.
Resumo:
Aim. The aim of this study was to evaluate whether an association of elastic stockings and walking for a short period in the late afternoon reduces leg edema. Methods. Volume changes of the legs of sixteen patients (32 limbs), who walked on a treadmill for 30 minutes using elastic compression stockings, were analyzed in a quantitative, cross-over randomized (in order of arrival at the clinic) study. They were submitted to volumetry using the water displacement technique and subsequently required to put on 20/30 made-to-measure compression stockings (Sigvaris). The patients walked on a treadmill for 30 minutes and after removing the stockings volumetry of the legs was again performed. Legs were assessed using the CEAP classification and divided into groups. Analysis of variance was used for statistical analysis with an alpha error of 5% being considered acceptable. Results. When participants walked wearing compression stockings, there was a reduction in leg volume. When the CEAP classification was evaluated, it was noted that there was a statistically significant difference for the CEAP C0, C1 and C2 categories of legs using stockings compared to those that did not use. Conclusion. Compression stockings have a synergistic effect with walking in the late afternoon thus reducing edema of the lower limbs. [Int Angiol 2012;31:490-3]
Resumo:
Objectives The purpose of this study was to assess the impact of renal insufficiency (RI) on the distribution pattern of peripheral arterial disease (PAD). We hypothesised that RI is associated with a distally accentuated involvement of the peripheral arterial tree. Design This is a retrospective analysis. Materials and Methods Analysis was based on a consecutive series of 2709 patients with chronic PAD of atherosclerotic origin undergoing primary endovascular treatment of lower-extremity arteries. Atherosclerotic pattern was grouped into femoropopliteal (n = 2085) and infragenicular (n = 892) disease according to target lesions treated while using iliac disease (n = 1133) as reference. Univariable and multivariable multinomial regression analyses were performed to assess relation with RI. Results are shown as relative risk ratio (RRRs) with 95% confidence intervals (95% CIs). A p < 0.05 was considered statistically significant. RI was defined as glomerular filtration rate (GFR) < 60 ml min−1 1.73 m−2. Results Presence of RI was an independent risk factor for a centrifugal lesion pattern (RRR 1.48, 95% CI: 1.17–1.86, p = 0.001). Moreover, a decrease in GFR by 10 ml min−1 1.73 m−2 was associated with an RRR of 1.08 for below-the-knee arterial disease (95% CI: 1.03–1.13, p = 0.003). Conclusion Presence and severity of RI are independent predictors of a distal obstructive pattern in patients with symptomatic PAD.
Resumo:
Background Existing lower-limb, region-specific, patient-reported outcome measures have clinimetric limitations, including limitations in psychometric characteristics (eg, lack of internal consistency, lack of responsiveness, measurement error) and the lack of reported practical and general characteristics. A new patient-reported outcome measure, the Lower Limb Functional Index (LLFI), was developed to address these limitations. Objective The purpose of this study was to overcome recognized deficiencies in existing lower-limb, region-specific, patient-reported outcome measures through: (1) development of a new lower-extremity outcome scale (ie, the LLFI) and (2) evaluation of the clinimetric properties of the LLFI using the Lower Extremity Functional Scale (LEFS) as a criterion measure. Design This was a prospective observational study. Methods The LLFI was developed in a 3-stage process of: (1) item generation, (2) item reduction with an expert panel, and (3) pilot field testing (n=18) for reliability, responsiveness, and sample size requirements for a larger study. The main study used a convenience sample (n=127) from 10 physical therapy clinics. Participants completed the LLFI and LEFS every 2 weeks for 6 weeks and then every 4 weeks until discharge. Data were used to assess the psychometric, practical, and general characteristics of the LLFI and the LEFS. The characteristics also were evaluated for overall performance using the Measurement of Outcome Measures and Bot clinimetric assessment scales. Results The LLFI and LEFS demonstrated a single-factor structure, comparable reliability (intraclass correlation coefficient [2,1]=.97), scale width, and high criterion validity (Pearson r=.88, with 95% confidence interval [CI]). Clinimetric performance was higher for the LLFI compared with the LEFS on the Measurement of Outcome Measures scale (96% and 95%, respectively) and the Bot scale (100% and 83%, respectively). The LLFI, compared with the LEFS, had improved responsiveness (standardized response mean=1.75 and 1.64, respectively), minimal detectable change with 90% CI (6.6% and 8.1%, respectively), and internal consistency (α=.91 and .95, respectively), as well as readability with reduced user error and completion and scoring times. Limitations Limitations of the study were that only participants recruited from outpatient physical therapy clinics were included and that no specific conditions or diagnostic subgroups were investigated. Conclusion The LLFI demonstrated sound clinimetric properties. There was lower response error, efficient completion and scoring, and improved responsiveness and overall performance compared with the LEFS. The LLFI is suitable for assessment of lower-limb function.
Resumo:
OBJECTIVES: Aim of this study is to correlate distribution pattern of lower limb atherosclerosis with cardiovascular risk factor profile of patients with peripheral arterial occlusive disease (PAD). PATIENTS AND METHODS: Analysis is based on a consecutive series of 2659 patients (1583 men, 1076 women, 70+/-11 years) with chronic PAD of atherosclerotic origin undergoing primary endovascular treatment of lower extremity arteries. Pattern of atherosclerosis was grouped into iliac (n=1166), femoropopliteal (n=2151) and infrageniculate (n=888) disease defined according to target lesions treated. A multivariable multinomial logistic regression analysis was performed to assess relation with age, gender and classical cardiovascular risk factors (diabetes mellitus, arterial hypertension, hypercholesterolemia, cigarette smoking) using femoropopliteal disease as reference. RESULTS: Iliac disease was associated with younger age (RRR 0.95 per year of age, 95%-CI 0.94-0.96, p<0.001), male gender (RRR 1.32, 95%-CI 1.09-1.59, p=0.004) and cigarette smoking (RRR 2.02, 95%-CI 1.68-2.42, p<0.001). Infrageniculate disease was associated with higher age (RRR 1.02, 95%-CI 1.01-1.02, p<0.001), male gender (RRR 1.23, 95%-CI 1.06-1.41, p=0.005) and diabetes mellitus (RRR 1.68, 95%-CI 1.47-1.92, p<0.001). Hypercholesterolemia was less prevalent in patients with lesions below the knee (RRR 0.82, 95%-CI 0.71-0.94, p=0.006), whereas no distinct pattern was apparent related to arterial hypertension. CONCLUSION: Clinical phenotype of peripheral atherosclerosis varies with prevalence of cardiovascular risk factors suggesting differences in mechanisms involved in iliac as compared with infrageniculate lesions. Identification of molecular mechanism might have influence on future therapeutic strategies in PAD patients.
Resumo:
A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.
Resumo:
Objective: To determine whether differences existed in lower-extremity joint biomechanics during self-selected walking cadence (SW) and fast walking cadence (FW) in overweight- and normal-weight children.---------- Design: Survey.---------- Setting: Institutional gait study center.---------- Participants: Participants (N=20; mean age ± SD, 10.4±1.6y) from referred and volunteer samples were classified based on body mass index percentiles and stratified by age and sex. Exclusion criteria were a history of diabetes, neuromuscular disorder, or recent lower-extremity injury.---------- Main Outcome Measures: Sagittal, frontal, and transverse plane angular displacements (degrees) and peak moments (newton meters) at the hip, knee, and ankle joints.---------- Results: The level of significance was set at P less than .008. Compared with normal-weight children, overweight children had greater absolute peak joint moments at the hip (flexor, extensor, abductor, external rotator), the knee (flexor, extensor, abductor, adductor, internal rotator), and the ankle (plantarflexor, inverter, external/internal rotators). After including body weight as a covariate, overweight children had greater peak ankle dorsiflexor moments than normal-weight children. No kinematic differences existed between groups. Greater peak hip extensor moments and less peak ankle inverter moments occurred during FW than SW. There was greater angular displacement during hip flexion as well as less angular displacement at the hip (extension, abduction), knee (flexion, extension), and ankle (plantarflexion, inversion) during FW than SW.---------- Conclusions: Overweight children experienced increased joint moments, which can have long-term orthopedic implications and suggest a need for more nonweight-bearing activities within exercise prescription. The percent of increase in joint moments from SW to FW was not different for overweight and normal-weight children. These findings can be used in developing an exercise prescription that must involve weight-bearing activity.
Resumo:
Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.
Resumo:
Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.