892 resultados para Kinetics adsorption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption and diffusion in a porous media were studied theoretically and experimentally with a differential transient permeation method. The porous medium is allowed to equilibrate at some specified loading, and then the time trajectory of the permeation process is followed after a small difference between the pressures at the end faces of the porous medium is introduced at time t = 0 +. Such a trajectory us. time would contain adsorption and diffusion characteristics of the system. By studying this for various surface loadings, pore and surface diffusions can be fully characterized. Mathematical modeling of transient permeation is detailed for pure gases or vapors diffusion and adsorption in porous media. Effects of nonlinearity of adsorption isotherm, pressure, temperature and heat effects were considered in the model. Experimental data of diffusion and adsorption of propane, n-butane and n-hexane in activated carbon at different temperatures and loadings show the potential of this method as a useful tool to study adsorption kinetics in porous media. Validity of the model is best tested against the transient data where the kinetics curves exhibit sigmoidal shape, which is a result of the diffusion and adsorption rate during the initial stage of permeation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five kinetic models for adsorption of hydrocarbons on activated carbon are compared and investigated in this study. These models assume different mass transfer mechanisms within the porous carbon particle. They are: (a) dual pore and surface diffusion (MSD), (b) macropore, surface, and micropore diffusion (MSMD), (c) macropore, surface and finite mass exchange (FK), (d) finite mass exchange (LK), and (e) macropore, micropore diffusion (BM) models. These models are discriminated using the single component kinetic data of ethane and propane as well as the multicomponent kinetics data of their binary mixtures measured on two commercial activated carbon samples (Ajax and Norit) under various conditions. The adsorption energetic heterogeneity is considered for all models to account for the system. It is found that, in general, the models assuming diffusion flux of adsorbed phase along the particle scale give better description of the kinetic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermogravimetric analysis has been widely applied in kinetic studies of carbon gasification, with the associated temporal weight change profiles being used to extract kinetic information and to validate gasification models. However the weight change profiles are not always governed by the intrinsic gasification activity because of the effect of chemisorption and its dynamics. In the present work we theoretically determine the criteria under which weight change profiles can be used to determine intrinsic kinetics for CO2 and O2 gasification by examining the region in which the chemisorption dynamics can be assumed pseudo-steady. It is found that the validity of the pseudo-steady assumption depends on the experimental conditions as well as on the initial surface area of carbon. Based on known mechanisms and rate constants an active surface area region is identified within which the steady state assumption is valid and the effect of chemisorption dynamics is negligible. The size of the permissible region is sensitive to the reaction temperature and gas pressure. The results indicate that in some cases the thermogravimetric data should be used with caution in kinetic studies. A large amount of literature on thermogravimetric analyzer determined char gasification kinetics is examined and the importance of chemisorption dynamics for the data assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil P sorption capacity has been studied for many years, but little attention has been paid to the rate of this process, which is relevant in the planning of phosphate fertilization. The purpose of this experiment was to assess kinetics of P sorption in 12 representative soil profiles of the State of Paraíba (Brazil), select the best data fitting among four equations and relate these coefficients to the soil properties. Samples of 12 soils with wide diversity of physical, chemical and mineralogical properties were agitated in a horizontal shaker, with 10 mmo L-1 CaCl2 solution containing 6 and 60 mg L-1 P, for periods of 5, 15, 30, 45, 60, 90, 120, 420, 720, 1,020, and 1,440 min. After each shaking period, the P concentration in the equilibrium solution was measured and three equations were fitted based on the Freundlich equation and one based on the Elovich equation, to determine which soil had the highest sorption rate (kinetics) and which soil properties correlated to this rate. The kinetics of P sorption in soils with high maximum P adsorption capacity (MPAC) was fast for 30 min at the lower initial P concentration (6 mg L-1). No difference was observed between soils at the higher initial P concentration (60 mg L-1). The P adsorption kinetics were positively correlated with clay content, MPAC and the amount of Al extracted with dithionite-citrate-bicarbonate. The data fitted well to Freundlich-based equations equation, whose coefficients can be used to predict P adsorption rates in soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new class of sequential adsorption models in which the adsorbing particles reach the surface following an inclined direction (shadow models). Capillary electrophoresis, adsorption in the presence of a shear, and adsorption on an inclined substrate are physical manifestations of these models. Numerical simulations are carried out to show how the new adsorption mechanisms are responsible for the formation of more ordered adsorbed layers and have important implications in the kinetics, in particular, modifying the jamming limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mercury (II) adsorption studies in top soils (top 10 cm) from the Rio Negro basin show this process depends strongly on some selected parameters of the aqueous phase in contact with the soils. Maximum adsorption occurred in the pH range 3.0-5.0 (>90%). Dissolved organic matter shows an inhibitory effect on the availability of Hg (II) to be adsorbed by the soils, whereas a higher chloride content of the solution resulted in a lower adsorption of Hg (II) at pH 5.0. Soils with higher organic matter content were less affected by changes in the salinity. An increase in the initial Hg (II) concentration increased the amount of Hg (II) adsorbed by the soil and decreased the time needed to reach equilibrium. A Freundlich isotherm provided a good model for Hg (II) adsorption in the two types of soil studied. The kinetics of Hg (II) adsorption on Amazonian soils showed to be very fast and followed pseudo-second order kinetics. An environmental implication of these results is discussed under the real scenario present in the Negro River basin, where acidic waters are in contact with a soil naturally rich in mercury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the synthesis of hydrogels of cellulose acetate (AC) crosslinked with 1,2,4,5-benzenotetracarboxylic dianhydride (PMDA). The crosslinking reaction was monitored by FTIR. Analysis of aromatic fragments from the alkaline hydrolysis of the gels by UV spectroscopy indicated that an increase in the stoichiometric ratio of dianhydride resulted in higher degrees of crosslinking. The non-porous nature of the gels was confirmed by analysis of nitrogen adsorption. Water absorption isotherms showed that as the temperature and degree of crosslinking increased, the percentage of water absorbed at equilibrium (%Seq) also increased. The hydrogels presented second order swelling kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pollution and toxicity problems posed by arsenic in the environment have long been established. Hence, the removal and recovery remedies have been sought, bearing in mind the efficiency, cost effectiveness and environmental friendliness of the methods employed. The sorption kinetics and intraparticulate diffusivity of As (III) bioremediation from aqueous solution using modified and unmodified coconut fiber was investigated. The amount adsorbed increased as time increased, reaching equilibrium at about 60 minutes. The kinetic studies showed that the sorption rates could be described by both pseudo-first order and pseudo-second order process with the later showing a better fit with a value of rate constant of 1.16 x 10-4 min-1 for the three adsorbent types. The mechanism of sorption was found to be particle diffusion controlled. The diffusion and boundary layer effects were also investigation. Therefore, the results show that coconut fiber, both modified and unmodified is an efficient sorbent for the removal of As (III) from industrial effluents with particle diffusion as the predominant mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption kinetics and equilibrium of methylene blue (MB) onto reticulated formic lignin (RFL) from sugar cane bagasse was studied. The adsorption process is pH, temperature and ionic strength (µ) dependent and obeys the Langmuir model. Conditions for higher adsorption rate and capacity were determined. The faster adsorption (12 hours) and higher adsorption capacity (34.20 mg.g-1) were observed at pH = 5.8 (acetic acid-sodium acetate aqueous buffer), 50 ºC and 0.1 ionic strength. Under temperature (50 ºC) control and occasional mechanical stirring it took from 1 to 10 days to reach the equilibrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of two herbicides, atrazine and picloram, displaying different sorption characteristics, were evaluated for O (organic) horizon samples collected from SMZs (streamside management zones) in Piedmont (Ultisol) of Georgia, USA. Samples were randomly collected from within 5 SMZs selected for a study of surface flow in field trials. The five SMZs represented five different slope classes, 2, 5, 10, 15 and 20%. Results indicate that 0 horizons have the potential for sorbing atrazine from surface water moving through forested SMZs. Atrazine adsorption was nearly linear over a 24-hour period. Equilibrium adsorption, determined through 24-hour laboratory tests, resulted in a Freundlich coefficient of 67.5 for atrazine. For picloram, negative adsorption was observed in laboratory experiments. This seemed to be due to interference with ELISA analyses; however, this was not confirmed. The adsorption coefficient (Kd) obtained for atrazine in 0 horizons was greater than it would have been expected for mineral soil (from 1 to 4). Picloram was not sorbed in 0 horizons at any significant degree. Although there is a significant potential for the direct adsorption of soluble forms of herbicides in SMZs, the actual value of this adsorption for protecting water is likely to be limited even for relatively strongly sorbed chemicals, such as atrazine, due to relatively slow uptake kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent decades, industrial activity growth and increasing water usage worldwide have led to the release of various pollutants, such as toxic heavy metals and nutrients, into the aquatic environment. Modified nanocellulose and microcellulose-based adsorption materials have the potential to remove these contaminants from aqueous solutions. The present research consisted of the preparation of five different nano/microcellulose-based adsorbents, their characterization, the study of adsorption kinetics and isotherms, the determination of adsorption mechanisms, and an evaluation of adsorbents’ regeneration properties. The same well known reactions and modification methods that were used for modifying conventional cellulose also worked for microfibrillated cellulose (MFC). The use of succinic anhydride modified mercerized nanocellulose, and aminosilane and hydroxyapatite modified nanostructured MFC for the removal of heavy metals from aqueous solutions exhibited promising results. Aminosilane, epoxy and hydroxyapatite modified MFC could be used as a promising alternative for H2S removal from aqueous solutions. In addition, new knowledge about the adsorption properties of carbonated hydroxyapatite modified MFC as multifunctional adsorbent for the removal of both cations and anions ions from water was obtained. The maghemite nanoparticles (Fe3O4) modified MFC was found to be a highly promising adsorbent for the removal of As(V) from aqueous solutions due to its magnetic properties, high surface area, and high adsorption capacity . The maximum removal efficiencies of each adsorbent were studied in batch mode. The results of adsorption kinetics indicated very fast removal rates for all the studied pollutants. Modeling of adsorption isotherms and adsorption kinetics using various theoretical models provided information about the adsorbent’s surface properties and the adsorption mechanisms. This knowledge is important for instance, in designing water treatment units/plants. Furthermore, the correspondence between the theory behind the model and properties of the adsorbent as well as adsorption mechanisms were also discussed. On the whole, both the experimental results and theoretical considerations supported the potential applicability of the studied nano/microcellulose-based adsorbents in water treatment applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction between three phenolic compounds (catechin, caffeic acid and ferulic acid) onto two dietary fibres (cellulose and xylan) has been evaluated to inquire possible interferences on the biodisponibility of phenolic compounds. The adsorption kinetics were performed using solutions containing 100 mg/L of phenolic compounds during a contact time ranging between 10 and 120 minutes at pH 2.0, 4.5, and 7.0. After the kinetics, isotherms were obtained using phenolic compounds concentration ranging between 10 and 80 mg/L during 60 minutes, at pH 2.0 and 7.0 and temperature of 36 °C. Results indicate that adsorbed quantities mainly changed in function of pH, however the maximum adsorption was only of 0.978 mg of caffeic acid/g of xylan at pH 2 and after 60 min. Redlich-Peterson model were able to predict the adsorption isotherms of all phenolic compounds onto cellulose, except for caffeic acid at pH 7.0. The low adsorption capacities observed suggest that both dietary fibres are unable to compromise the biodisponibility of phenolic compounds, especially in the small intestine, where they are partially absorbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal