959 resultados para Kinases MAPK
Resumo:
A high concentration of circulating low-density lipoproteins (LDL) is a major risk factor for atherosclerosis. Native LDL and LDL modified by glycation and/or oxidation are increased in diabetic individuals. LDL directly stimulate vascular smooth muscle cell (VSMC) proliferation; however, the mechanisms remain undefined. The extracellular signal-regulated kinase (ERK) pathway mediates changes in cell function and growth. Therefore, we examined the cellular effects of native and modified LDL on ERK phosphorylation in VSMC. Addition of native, mildly modified (oxidized, glycated, glycoxidized) and highly modified (highly oxidized, highly glycoxidized) LDL at 25 microg/ml to rat VSMC for 5 min induced a fivefold increase in ERK phosphorylation. To elucidate the signal transduction pathway by which LDL phosphorylate ERK, we examined the roles of the Ca(2+)/calmodulin pathway, protein kinase C (PKC), src kinase, and mitogen-activated protein kinase kinase (MEK). Treatment of VSMC with the intracellular Ca(2+) chelator EGTA-AM (50 micromol/l) significantly increased ERK phosphorylation induced by native and mildly modified LDL, whereas chelation of extracellular Ca(2+) by EGTA (3 mmol/l) significantly reduced LDL-induced ERK phosphorylation. The calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (40 micromol/l) significantly decreased ERK phosphorylation induced by all types of LDL. Downregulation of PKC with phorbol myristate acetate (5 micromol/l) markedly reduced LDL-induced ERK phosphorylation. Pretreatment of VSMC with a cell-permeable MEK inhibitor (PD-98059, 40 micromol/l) significantly decreased ERK phosphorylation in response to native and modified LDL. These findings indicate that native and mildly and highly modified LDL utilize similar signaling pathways to phosphorylate ERK and implicate a role for Ca(2+)/calmodulin, PKC, and MEK. These results suggest a potential link between modified LDL, vascular function, and the development of atherosclerosis in diabetes.
Resumo:
Glycation and/or oxidation of LDL may promote diabetic nephropathy. The mitogen-activated protein kinase (MAPK) cascade, which includes extracellular signal-regulated protein kinases (ERKs), modulates cell function. Therefore, we examined the effects of LDL on ERK phosphorylation in cultured rat mesangial cells. In cells exposed to 100 microg/ml native LDL or LDL modified by glycation, and/or mild or marked (copper-mediated) oxidation, ERK activation peaked at 5 min. Five minutes of exposure to 10-100 microg/ml native or modified LDL produced a concentration-dependent (up to sevenfold) increase in ERK activity. Also, 10 microg/ml native LDL and mildly modified LDL (glycated and/or mildly oxidized) produced significantly greater ERK activation than that induced by copper-oxidized LDL +/- glycation (P <0.05). Pretreatment of cells with Src kinase and MAPK kinase inhibitors blocked ERK activation by 50-80% (P <0.05). Native and mildly modified LDL, which are recognized by the native LDL receptor, induced a transient spike of intracellular calcium. Copper-oxidized (+/- glycation) LDL, recognized by the scavenger receptor, induced a sustained rise in intracellular calcium. The intracellular calcium chelator (EGTA/AM) further increased ERK activation by native and mildly modified LDL (P <0.05). These findings demonstrate that native and modified LDL activate ERKs 1 and 2, an early mitogenic signal, in mesangial cells and provide evidence for a potential link between modified LDL and the development of glomerular injury in diabetes.
Resumo:
La réponse cellulaire aux ultra-violets (UV), ou réponse UV, est une réponse complexe et spécialisée dans l’adaptation et la tolérance des dommages aux UV. Celle-ci est initiée par un grand nombre d’évènements moléculaires et de signalisation nucléaire mais aussi au niveau de la membrane plasmique ou du cytoplasme. L’importance et l’influence exactes de ces évènements sur la réparation par excision de nucléotides (NER) des dommages UV à l’ADN sont encore mal comprises et doivent encore être méthodiquement démontrées. Dans cette thèse, grâce à l’utilisation d’une méthode sensible d’analyse de la réparation NER basée sur la cytométrie en flux, il est montré, dans un premier temps, que l’activité des voies MAPK (Mitogen-Activated Protein Kinases), qui sont des voies de signalisation de stress UV d’origine cytoplsamique, ne participent pas à l’efficacité de réparation NER des dommages UV dans les cellules humaines. En effet, l’abrogation de la signalisation MAPK, par inhibition pharmacologique, par utilisation de mutants dominant-négatifs ou par inhibition de leur expression endogène, ne révèlent aucun changement de la cinétique de réparation des dommages UV par excision de nucléotides. Cependant, l’utilisation de cette même méthode de réparation, mais cette fois, appliquée pour l’étude de réparation NER en fonction du cycle cellulaire, a permis de mettre en évidence la nécessité fonctionnelle de l’ADN polymérase translésionnelle eta (Pol η) dans la réparation NER des dommages UV, uniquement en phase S. Cette observation fut initialement caractérisée dans les cellules de patients affectés du syndrome variant de xérodermie pigmentaire (XP-V) puis, confirmée ensuite par l’inhibition de l’expression de Pol η endogène ou par la complémentation avec des mutants non-fonctionnels dans les cellules XP-V. Ces résultats indiquent que, contrairement à la réponse UV MAPK cytoplasmique, les évènements nucléaires comme la synthèse translésionnelle, peuvent influencer l’efficacité de réparation NER en phase S. Plus particulièrement, ces données établissent un lien possible entre la réparation NER en phase S et les niveaux de stress réplicatifs, révélé ici par la déficience fonctionnelle Pol η ou ATR. Les observations, présentées dans cette thèse, renforcent un rôle du point de contrôle S aux UV sur l’efficacité de la réparation NER et suggèrent que l’inhibition NER, observée en phase S dans les cellules XP-V, est modulée par le stress réplicatif. Un tel moyen de contrôle pourrait avoir une action plutôt protectrice pendant cette phase critique du cycle cellulaire. Mots clés: UV, translésionnelle, eta, MAPK, NER, CPD, cytométrie, phase-S, tolérance.
Resumo:
Les kinases régulées par les signaux extracellulaires (ERK1/2) régulent une multitude de processus cellulaires, incluant la prolifération, la survie et la différenciation. Ces kinases représentent l’élément terminal de la voie ERK/MAPK, laquelle est activée dans près de 30% de tous les cancers humains et donc généralement perçue comme étant un effecteur critique de la progression tumorale. Cependant, une accumulation d’observations suggèrent que les kinases ERK pourraient également induire la suppression tumorale. Le but premier de cette thèse est de démontrer comment la signalisation par ERK peut contribuer à la suppression tumorale et de concilier les mécanismes impliqués avec son rôle dans la progression du cancer. Puisque nos travaux ont une incidence sur les bénéfices attendus de certaines thérapies actuellement en développement, le deuxième objectif de la thèse est de proposer de nouvelles stratégies thérapeutiques pour combattre le cancer. Nous avons démontré qu’une hyperactivation des kinases ERK induit la sénescence cellulaire. Le mécanisme implique la dégradation sélective et dépendante du protéasome de nombreuses protéines, ce que nous avons nommé le SAPD (Senescence-Associated Protein Degradation). Ce processus cible des protéines requises pour différentes fonctions cellulaires, incluant la progression du cycle cellulaire, les fonctions mitochondriales et la biogenèse des ribosomes. Ensuite, nos résultats montrent qu’en plus d’inhiber l’établissement de la sénescence, une diminution de la signalisation par les kinases ERK favorise la reprogrammation cellulaire, laquelle permet aux cellules précancéreuses de développer leur tumorigénicité et aux cellules cancéreuses d’acquérir des propriétés attribuables aux cellules souches. Ces observations suggèrent que les mécanismes qui inhibent la voie ERK/MAPK pourraient favoriser l’initiation du cancer, la formation de métastases et la résistance à diverses thérapies. Enfin, nous avons démontré que la metformine, utilisée pour le traitement du diabète, inhibe le facteur de transcription NF-kB. Ce dernier joue un rôle central dans la reprogrammation cellulaire et dans la production de cytokines pro-inflammatoires nocives par les cellules sénescentes. Ainsi, nous émettons l’hypothèse que la metformine pourrait être utilisée en combinaison avec certaines thérapies afin d’éviter les effets secondaires tant d’une inhibition des kinases ERK que d’une hyperactivation. Globalement, les résultats présentés démontrent que l’effet de la voie ERK/MAPK dépend de la force de son activation. Alors qu’une activation modérée peut contribuer à la prolifération de la plupart des cellules, une forte activation induit la sénescence tandis qu’au contraire, une faible activation favorise la reprogrammation des cellules cancéreuses et donc une augmentation de l’agressivité de la tumeur. Cette polyvalence de la voie suggère une certaine prudence face à l’usage des inhibiteurs de la voie ERK/MAPK. Cependant, elle nous motive à travailler au développement de nouvelles stratégies thérapeutiques, lesquelles pourraient inclure la metformine.
Resumo:
La voie de signalisation des Récepteurs Tyrosine Kinase (RTK) occupe un rôle central dans la régulation de la croissance cellulaire, la prolifération, la différentiation et la motilité. Une régulation anormale des RTKs mène à plusieurs maladies humaines telles que le cancer du sein, la seconde cause de mortalité chez les femmes à cause de l’amplification et la mutation fréquente de la protéine tyrosine kinase HER2 (ERBB2). Grb2-associated binder (Gab) 2 est une protéine adaptatrice qui agit en aval de plusieurs RTKs, y compris HER2, pour réguler de multiples voies de signalisation. En réponse à la stimulation par de nombreux facteurs de croissances et cytokines, Gab2 est recruté à la membrane plasmique où il potentialise l’activation des voies de signalisation Ras/mitogen-activated protein kinase (MAPK) et PI3K (phosphatidylinositol-3-kinase)/Akt (protein kinase B). En plus d’occuper un rôle essentiel durant le développement du système hématopoïétique, Gab2 est souvent amplifié dans les cancers, notamment le cancer du sein et les mélanomes. Cependant, les mécanismes moléculaires qui régulent le fonctionnement de Gab2 sont peu connus. Il est établi que lors de l’activation des RTKs, Gab2 est phosphorylé au niveau de plusieurs résidus Tyrosine, menant à l’association de différentes protéines comme p85 et Shp2. En plus de la phosphorylation en Tyrosine, notre laboratoire ainsi que d’autres groupes de recherche avons identifié que Gab2 est aussi phosphorylé au niveau de résidus Ser/Thr suite à l’activation de la voie de signalisation MAPK. Cependant, la régulation des fonctions de Gab2 par ces modifications post-traductionnelles est encore peu connue. Dans le but de comprendre comment Gab2 est régulé par la voie de signalisation MAPK, nous avons utilisé différentes approches. Dans la première partie de ma thèse, nous avons déterminé un nouveau mécanisme démontrant que la voie de signalisation Ras/MAPK, par le biais des protéines kinases RSK (p90 ribosomal S6 kinase), phosphoryle Gab2. Ce phénomène se produit à la fois in vivo et in vitro au niveau de trois résidus Ser/Thr conservés. Des mutations au niveau de ces sites de phosphorylation entrainent le recrutement de Shp2 menant à l’augmentation de la motilité cellulaire, ce qui suggère que les protéines RSK restreignent les fonctions dépendantes de Gab2. Ce phénomène est le résultat de la participation de RSK dans la boucle de rétroaction négative de la voie de signalisation MAPK. Dans la seconde partie de ma thèse, nous avons démontré que les protéines ERK1/2 phosphorylent Gab2 au niveau de plusieurs résidus pS/T-P à la fois in vitro et in vivo, entrainant l’inhibition du recrutement de p85. De plus, nous avons établi pour la première fois que Gab2 interagit physiquement avec ERK1/2 dans des cellules lors de l’activation de la voie de signalisation MAPK. Par ailleurs, nous avons montré un nouveau domaine d’attache du module ERK1/2 sur Gab2. Des mutations sur les résidus essentiels de ce domaine d’attache n’entrainent pas seulement la dissociation de ERK1/2 avec Gab2, mais diminuent également la phosphorylation dépendante de ERK1/2 sur Gab2. Ainsi, nos données montrent que la voie de signalisation MAPK régule les fonctions de la protéine Gab2 par le biais des kinases RSK et ERK1/2. Cette thèse élabore par ailleurs un schéma complet des fonctions de Gab2 dépendantes de la voie de signalisation MAPK dans le développement de nombreux cancers.
Resumo:
Aims. Protein kinases are potential therapeutic targets for heart failure, but most studies of cardiac protein kinases derive from other systems, an approach that fails to account for specific kinases expressed in the heart and the contractile cardiomyocytes. We aimed to define the cardiomyocyte kinome (i.e. the protein kinases expressed in cardiomyocytes) and identify kinases with altered expression in human failing hearts. Methods and Results. Expression profiling (Affymetrix microarrays) detected >400 protein kinase mRNAs in rat neonatal ventricular myocytes (NVMs) and/or adult ventricular myocytes (AVMs), 32 and 93 of which were significantly upregulated or downregulated (>2-fold), respectively, in AVMs. Data for AGC family members were validated by qPCR. Proteomics analysis identified >180 cardiomyocyte protein kinases, with high relative expression of mitogen-activated protein kinase cascades and other known cardiomyocyte kinases (e.g. CAMKs, cAMP-dependent protein kinase). Other kinases are poorly-investigated (e.g. Slk, Stk24, Oxsr1). Expression of Akt1/2/3, BRaf, ERK1/2, Map2k1, Map3k8, Map4k4, MST1/3, p38-MAPK, PKCδ, Pkn2, Ripk1/2, Tnni3k and Zak was confirmed by immunoblotting. Relative to total protein, Map3k8 and Tnni3k were upregulated in AVMs vs NVMs. Microarray data for human hearts demonstrated variation in kinome expression that may influence responses to kinase inhibitor therapies. Furthermore, some kinases were upregulated (e.g. NRK, JAK2, STK38L) or downregulated (e.g. MAP2K1, IRAK1, STK40) in human failing hearts. Conclusions. This characterization of the spectrum of kinases expressed in cardiomyocytes and the heart (cardiomyocyte and cardiac kinomes) identified novel kinases, some of which are differentially expressed in failing human hearts and could serve as potential therapeutic targets.
Resumo:
The translocation of protein kinase C (PKC) isoforms PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta from soluble to particulate fractions was studied in ventricular cardiomyocytes cultured from neonatal rats. Endothelin-1 (ET-1) caused a rapid ETA receptor-mediated translocation of PKC-delta and PKC-epsilon (complete in 0.5-1 min). By 3-5 min, both isoforms were returning to the soluble fraction, but a greater proportion of PKC-epsilon remained associated with the particulate fraction. The EC50 of translocation for PKC-delta was 11-15 nM ET-1 whereas that for PKC-epsilon was 1.4-1.7 nM. Phenylephrine caused a rapid translocation of PKC-epsilon (EC50 = 0.9 microM) but the proportion lost from the soluble fraction was less than with ET-1. Translocation of PKC-delta was barely detectable with phenylephrine. Neither agonist caused any consistent translocation of PKC-alpha or PKC-zeta. Activation of p42 and p44 mitogen-activated protein kinase (MAPK) by ET-1 or phenylephrine followed more slowly (complete in 3-5 min). Phosphorylation of p42-MAPK occurred simultaneously with its activation. The proportion of the total p42-MAPK pool phosphorylated in response to ET-1 (50%) was greater than with phenylephrine (20%). In addition to activation of MAPK, an unidentified p85 protein kinase was activated by ET-1 in the soluble fraction whereas an unidentified p58 protein kinase was activated in the particulate fraction.
Resumo:
"Stress-regulated" mitogen-activated protein kinases (SR-MAPKs) comprise the stress-activated protein kinases (SAPKs)/c-Jun N-terminal kinases (JNKs) and the p38-MAPKs. In the perfused heart, ischemia/reperfusion activates SR-MAPKs. Although the agent(s) directly responsible is unclear, reactive oxygen species are generated during ischemia/reperfusion. We have assessed the ability of oxidative stress (as exemplified by H2O2) to activate SR-MAPKs in the perfused heart and compared it with the effect of ischemia/reperfusion. H2O2 activated both SAPKs/JNKs and p38-MAPK. Maximal activation by H2O2 in both cases was observed at 0.5 mM. Whereas activation of p38-MAPK by H2O2 was comparable to that of ischemia and ischemia/reperfusion, activation of the SAPKs/JNKs was less than that of ischemia/reperfusion. As with ischemia/reperfusion, there was minimal activation of the ERK MAPK subfamily by H2O2. MAPK-activated protein kinase 2 (MAPKAPK2), a downstream substrate of p38-MAPKs, was activated by H2O2 to a similar extent as with ischemia or ischemia/reperfusion. In all instances, activation of MAPKAPK2 in perfused hearts was inhibited by SB203580, an inhibitor of p38-MAPKs. Perfusion of hearts at high aortic pressure (20 kilopascals) also activated the SR-MAPKs and MAPKAPK2. Free radical trapping agents (dimethyl sulfoxide and N-t-butyl-alpha-phenyl nitrone) inhibited the activation of SR-MAPKs and MAPKAPK2 by ischemia/reperfusion. These data are consistent with a role for reactive oxygen species in the activation of SR-MAPKs during ischemia/reperfusion.
Resumo:
Adenosine and mitogen-activated protein kinases (MAPKs) have been separately implicated in cardiac ischaemic preconditioning. We investigated the activation of MAPK subfamilies by adenosine in perfused rat hearts. p38-MAPK was rapidly phosphorylated and activated (10-fold activation, maximal at 5 min) by 10 mM adenosine, as was the p38-MAPK substrate, MAPKAPK2 (4.5-fold). SAPKs/JNKs were activated (5-fold) and ERKs were phosphorylated (both maximal at 5 min). The concentration dependences of activation of p38-MAPK and ERKs were biphasic with a 'high affinity' component (maximal at 10-100 microM adenosine) and a 'low affinity' component that had not saturated at 10 mM. SAPKs/JNKs were activated only by 10 mM adenosine. These results are consistent with MAPK involvement in adenosine-mediated ischaemic preconditioning.
Resumo:
We investigated the ability of phenylephrine (PE), an alpha-adrenergic agonist and promoter of hypertrophic growth in the ventricular myocyte, to activate the three best-characterized mitogen-activated protein kinase (MAPK) subfamilies, namely p38-MAPKs, SAPKs/JNKs (i.e. stress-activated protein kinases/c-Jun N-terminal kinases) and ERKs (extracellularly responsive kinases), in perfused contracting rat hearts. Perfusion of hearts with 100 microM PE caused a rapid (maximal at 10 min) 12-fold activation of two p38-MAPK isoforms, as measured by subsequent phosphorylation of a p38-MAPK substrate, recombinant MAPK-activated protein kinase 2 (MAPKAPK2). This activation coincided with phosphorylation of p38-MAPK. Endogenous MAPKAPK2 was activated 4-5-fold in these perfusions and this was inhibited completely by the p38-MAPK inhibitor, SB203580 (10 microM). Activation of p38-MAPK and MAPKAPK2 was also detected in non-contracting hearts perfused with PE, indicating that the effects were not dependent on the positive inotropic/chronotropic properties of the agonist. Although SAPKs/JNKs were also rapidly activated, the activation (2-3-fold) was less than that of p38-MAPK. The ERKs were activated by perfusion with PE and the activation was at least 50% of that seen with 1 microM PMA, the most powerful activator of the ERKs yet identified in cardiac myocytes. These results indicate that, in addition to the ERKs, two MAPK subfamilies, whose activation is more usually associated with cellular stresses, are activated by the Gq/11-protein-coupled receptor (Gq/11PCR) agonist, PE, in whole hearts. These data indicate that Gq/11PCR agonists activate multiple MAPK signalling pathways in the heart, all of which may contribute to the overall response (e.g. the development of the hypertrophic phenotype).
Resumo:
Three well-characterized mitogen-activated protein kinase (MAPK) subfamilies are expressed in rodent and rabbit hearts, and are activated by pathophysiological stimuli. We have determined and compared the expression and activation of these MAPKs in donor and failing human hearts. The amount and activation of MAPKs was assessed in samples from the left ventricles of 4 unused donor hearts and 12 explanted hearts from patients with heart failure secondary to ischaemic heart disease. Total MAPKs or dually phosphorylated (activated) MAPKs were detected by Western blotting and MAPK activities were measured by in gel kinase assays. As in rat heart, c-Jun N-terminal kinases (JNKs) were detected in human hearts as bands corresponding to 46 and 54 kDa; p38-MAPK(s) was detected as a band corresponding to approximately 40 kDa, and extracellularly regulated kinases, ERK1 and ERK2, were detected as 44- and 42-kDa bands respectively. The total amounts of 54 kDa JNK, p38-MAPK and ERK2 were similar in all samples, although 46-kDa JNK was reduced in the failing hearts. However, the mean activities of JNKs and p38-MAPK(s) were significantly higher in failing heart samples than in those from donor hearts (P<0.05). There was no significant difference in phosphorylated (activated) ERKs between the two groups. In conclusion, JNKs, p38-MAPK(s) and ERKs are expressed in the human heart and the activities of JNKs and p38-MAPK(s) were increased in heart failure secondary to ischaemic heart disease. These data indicate that JNKs and p38-MAPKs may be important in human cardiac pathology.
Resumo:
Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.
Resumo:
Cardiac hypertrophy, an important adaptational response, is associated with up-regulation of the immediate early gene, c- jun, which encodes the c-Jun transcription factor. c-Jun may feed back to up-regulate its own transcription and, since the c-Jun N-terminal kinase (JNK) family of mitogen-activated protein kinases (MAPKs) phosphorylate c-Jun(Ser-63/73) to increase its transactivating activity, JNKs are thought to be the principal factors involved in c- jun up-regulation. Hypertrophy in primary cultures of cardiac myocytes is induced by endothelin-1, phenylephrine or PMA, probably through activation of one or more of the MAPK family. These three agonists increased c- jun mRNA with the rank order of potency of PMA approximately endothelin-1>phenylephrine. Up-regulation of c- jun mRNA by endothelin-1 was attenuated by inhibitors of protein kinase C (GF109203X) and the extracellular signal-regulated kinase (ERK) cascade (PD98059 or U0126), but not by inhibitors of the JNK (SP600125) or p38-MAPK (SB203580) cascades. Hyperosmotic shock (0.5 M sorbitol) powerfully activates JNKs, but did not increase c- jun mRNA. These data suggest that ERKs, rather than JNKs, are required for c- jun up-regulation. However, endothelin-1 and phenylephrine induced greater up-regulation of c-Jun protein than PMA and phosphorylation of c-Jun(Ser-63/73) correlated with the level of c-Jun protein. Up-regulation of c-Jun protein by endothelin-1 was attenuated by inhibitors of protein kinase C and the ERK cascade, probably correlating with a primary input of ERKs into transcription. In addition, SP600125 inhibited the phosphorylation of c-Jun(Ser-63/73), attenuated the increase in c-Jun protein induced by endothelin-1 and increased the rate of c-Jun degradation. Thus whereas ERKs are the principal MAPKs required for c- jun transcription, JNKs are necessary to stabilize c-Jun for efficient up-regulation of the protein.
Resumo:
Although many studies have explored the stimuli which promote hypertrophic growth or death in cardiac myocytes and the signaling pathways which they activate, the mechanisms by which these pathways promote the pathophysiological responses are still obscure. The mitogen-activated protein kinase (MAPK) cascades (in which MAPKs are phosphorylated and activated by upstream MAPK kinases [MKKs] which are, in turn, phosphorylated and activated by MKK kinases [MKKKs]) were identified in the early- to mid-1990s as potentially key regulatory pathways in cardiac myocyte pathophysiology.1,2 The principal MAPKs investigated in cardiac myocytes are the extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38-MAPKs. ERK1/2 are potently activated by hypertrophic stimuli, whereas JNKs and p38-MAPKs are potently activated by cellular stresses (eg, oxidative stress). However, there is cross-talk such that JNKs and p38-MAPKs are activated by hypertrophic stimuli and ERK1/2 are activated by cellular stresses, and the contribution of each pathway to the overall cardiac myocyte response is not entirely clear. MAPKs phosphorylate a number of known transcription factors to alter their transactivating activities thus, presumably, influencing gene expression to elicit the cellular response.3 Nevertheless, the immediate consequences (ie, the transcription factors which are phosphorylated) and downstream consequences (ie, genes with altered expression) of MAPK signaling in the heart or specifically in cardiac myocytes are still largely unknown. To start to address this issue for the p38-MAPK pathway in the (rat) heart (Figure), Tenhunen et al4 directly injected adenoviruses encoding wild-type (WT) p38-MAPKα together …
Resumo:
Objectives: Early weaning (EW) increases proliferation of the gastric epithelium in parallel with higher expression of transforming growth factor alpha and its receptor epidermal growth factor receptor (EGFR). The primary objective of the present study was to examine involvement of EGFR signalling in regulating mucosal cell proliferation during the early weaning period. Materials and methods: Fifteen-day-old rats were split into two groups: suckling (control) and EW, in which pups were separated from the dam. Animals were killed daily until the 18th day, 3 days after onset of treatment. To investigate the role of EGFR in proliferation control, EW pups were injected with AG1478, an EGFR inhibitor; signalling molecules, proliferative indices and cell cycle-related proteins were evaluated. Results: EW increased ERK1/2 and Src phosphorylation at 17 days, but p-Akt levels were unchanged. Moreover, at 17 days, AG1478 administration impaired ERK phosphorylation, whereas p-Src and p-Akt were not altered. AG1478 treatment reduced mitotic and DNA synthesis indices, which were determined on HE-stained and BrdU-labelled sections. Finally, AG1478 injection decreased p21 levels in the gastric mucosa at 17 days, while no changes were detected in p27, cyclin E, CDK2, cyclin D1 and CDK4 concentrations. Conclusions: EGFR is part of the mechanism that regulates cell proliferation in rat gastric mucosa during early weaning. We suggest that such responses might depend on activation of MAPK and/or Src signalling pathways and regulation of p21 levels.