964 resultados para Job Shop, Train Scheduling, Meta-Heuristics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segundo Canem e Williamson (1998), o planejamento do layout é importante, pois normalmente representa os maiores e mais caros recursos da organização. Além disso, a localização e disposição física dos equipamentos no chão de fábrica têm impacto em diversos fatores como nível de estoque em processo, tamanho dos lotes de transferência, dificuldade no gerenciamento das atividades, movimentação de pessoas e produtos, entre outros. Portanto, o estudo de conceitos de arranjo físico e o desenvolvimento de modelos de projeto do layout, que visem a otimização dos recursos de produção, são de vital importância na busca pela melhoria dos sistemas produtivos. Neste contexto, este artigo apresenta um novo modelo de projeto de layout, para ambientes job shop com ampla variedade de peças. O modelo foi desenvolvido durante uma pesquisa de doutorado e foi aplicado em algumas empresas do setor metal mecânico. Os resultados obtidos comprovaram a eficiência do modelo projetado. O objetivo do modelo consiste em conduzir a equipe de projeto de layout a desenvolver alternativas de arranjo físico que estejam em consonância com conceitos e princípios da filosofia de produção enxuta. Vale ressaltar novamente que o modelo foi desenvolvido para ambientes com alta variedade de peças, ambientes esses em que, devido à dificuldade em se projetar o arranjo físico, as empresas terminam por adotar o layout funcional, conceito esse de arranjo físico que apresenta sérios problemas como excesso de transporte, altos níveis de estoques em processo, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effective control of production activities in dynamic job shop with predetermined resource allocation for all the jobs entering the system is a unique manufacturing environment, which exists in the manufacturing industry. In this thesis a framework for an Internet based real time shop floor control system for such a dynamic job shop environment is introduced. The system aims to maintain the schedule feasibility of all the jobs entering the manufacturing system under any circumstance. The system is capable of deciding how often the manufacturing activities should be monitored to check for control decisions that need to be taken on the shop floor. The system will provide the decision maker real time notification to enable him to generate feasible alternate solutions in case a disturbance occurs on the shop floor. The control system is also capable of providing the customer with real time access to the status of the jobs on the shop floor. The communication between the controller, the user and the customer is through web based user friendly GUI. The proposed control system architecture and the interface for the communication system have been designed, developed and implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Artificial immune system can be used to generate schedules in changing environments and it has been proven to be more robust than schedules developed using a genetic algorithm. Good schedules can be produced especially when the number of the antigens is increased. However, an increase in the range of the antigens had somehow affected the fitness of the immune system. In this research, we are trying to improve the result of the system by rescheduling the same problem using the same method while at the same time maintaining the robustness of the schedules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous research has shown that artificial immune systems can be used to produce robust schedules in a manufacturing environment. The main goal is to develop building blocks (antibodies) of partial schedules that can be used to construct backup solutions (antigens) when disturbances occur during production. The building blocks are created based upon underpinning ideas from artificial immune systems and evolved using a genetic algorithm (Phase I). Each partial schedule (antibody) is assigned a fitness value and the best partial schedules are selected to be converted into complete schedules (antigens). We further investigate whether simulated annealing and the great deluge algorithm can improve the results when hybridised with our artificial immune system (Phase II). We use ten fixed solutions as our target and measure how well we cover these specific scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Artificial immune system can be used to generate schedules in changing environments and it has been proven to be more robust than schedules developed using a genetic algorithm. Good schedules can be produced especially when the number of the antigens is increased. However, an increase in the range of the antigens had somehow affected the fitness of the immune system. In this research, we are trying to improve the result of the system by rescheduling the same problem using the same method while at the same time maintaining the robustness of the schedules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The railway planning problem is usually studied from two different points of view: macroscopic and microscopic. We propose a macroscopic approach for the high-speed rail scheduling problem where competitive effects are introduced. We study train frequency planning, timetable planning and rolling stock assignment problems and model the problem as a multi-commodity network flow problem considering competitive transport markets. The aim of the presented model is to maximize the total operator profit. We solve the optimization model using realistic probleminstances obtained from the network of the Spanish railwa operator RENFE, including other transport modes in Spain

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Train Timetabling Problem (TTP) has been widely studied for freight and passenger rail systems. A lesser effort has been devoted to the study of high-speed rail systems. A modeling issue that has to be addressed is to model departure time choice of passengers on railway services. Passengers who use these systems attempt to travel at predetermined hours due to their daily life necessities (e.g., commuter trips). We incorporate all these features into TTP focusing on high-speed railway systems. We propose a Rail Scheduling and Rolling Stock (RSch-RS) model for timetable planning of high-speed railway systems. This model is composed of two essential elements: i) an infrastructure model for representing the railway network: it includes capacity constraints of the rail network and the Rolling-Stock constraints; and ii) a demand model that defines how the passengers choose the departure time. The resulting model is a mixed-integer programming model which objective function attempts to maximize the profit for the rail operator

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A optimização e a aprendizagem em Sistemas Multi-Agente são consideradas duas áreas promissoras mas relativamente pouco exploradas. A optimização nestes ambientes deve ser capaz de lidar com o dinamismo. Os agentes podem alterar o seu comportamento baseando-se em aprendizagem recente ou em objectivos de optimização. As estratégias de aprendizagem podem melhorar o desempenho do sistema, dotando os agentes da capacidade de aprender, por exemplo, qual a técnica de optimização é mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização é mais adequada em determinado cenário. Nesta dissertação são estudadas algumas técnicas de resolução de problemas de Optimização Combinatória, sobretudo as Meta-heurísticas, e é efectuada uma revisão do estado da arte de Aprendizagem em Sistemas Multi-Agente. É também proposto um módulo de aprendizagem para a resolução de novos problemas de escalonamento, com base em experiência anterior. O módulo de Auto-Optimização desenvolvido, inspirado na Computação Autónoma, permite ao sistema a selecção automática da Meta-heurística a usar no processo de optimização, assim como a respectiva parametrização. Para tal, recorreu-se à utilização de Raciocínio baseado em Casos de modo que o sistema resultante seja capaz de aprender com a experiência adquirida na resolução de problemas similares. Dos resultados obtidos é possível concluir da vantagem da sua utilização e respectiva capacidade de adaptação a novos e eventuais cenários.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atualmente o sistema produtivo do tipo job shop é muito comum nas PMEs (Pequenas e Médias Empresas). Estas empresas trabalham por encomenda. Produzem grande variedade de modelos, e em pequenas quantidades. Os prazos de entrega são um fator de elevada importância, pois os clientes exigem um produto de qualidade no tempo certo. O presente trabalho, pretende criar uma ferramenta de programação da produção para a secção da costura, usando dados reais da empresa, que tem uma implantação do tipo job shop com máquinas multi-operação (Multi-Purpose -Machines Job Shop). No final, são reunidas as principais conclusões e perspetivados futuros desenvolvimentos. Os resultados obtidos comprovam que o algoritmo desenvolvido, com base no algoritmo de Giffler & Thompson, consegue obter com grande precisão e de forma rápida o escalonamento / balanceamento da secção da costura. Com a ferramenta criada, a empresa otimiza a programação da secção da costura e fornece informação importante á gestão da produção, possibilitando uma melhoria do planeamento da empresa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A optimização nas aplicações modernas assume um carácter fortemente interdisciplinar, relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos. O problema do escalonamento é recorrente no planeamento da produção. Sempre que uma ordem de fabrico é lançada, é necessário determinar que recursos serão utilizados e em que sequência as atividades serão executadas, para otimizar uma dada medida de desempenho. Embora ainda existam empresas a abordar o problema do escalonamento através de simples heurísticas, a proposta de sistemas de escalonamento tem-se evidenciado na literatura. Pretende-se nesta dissertação, a realização da análise de desempenho de Técnicas de Optimização, nomeadamente as meta-heurísticas, na resolução de problemas de optimização complexos – escalonamento de tarefas, particularmente no problema de minimização dos atrasos ponderados, 1||ΣwjTj. Assim sendo, foi desenvolvido um protótipo que serviu de suporte ao estudo computacional, com vista à avaliação do desempenho do Simulated Annealing (SA) e o Discrete Artificial Bee Colony (DABC). A resolução eficiente de um problema requer, em geral, a aplicação de diferentes métodos, e a afinação dos respetivos parâmetros. A afinação dos parâmetros pode permitir uma maior flexibilidade e robustez mas requer uma inicialização cuidadosa. Os parâmetros podem ter uma grande influência na eficiência e eficácia da pesquisa. A sua definição deve resultar de um cuidadoso esforço experimental no sentido da respectiva especificação. Foi usado, no âmbito deste trabalho de mestrado, para suportar a fase de parametrização das meta-heurísticas em análise, o planeamento de experiências de Taguchi. Da análise dos resultados, foi possível concluir que existem vantagem estatisticamente significativa no desempenho do DABC, mas quando analisada a eficiência é possível concluir que há vantagem do SA, que necessita de menos tempo computacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter addresses the resolution of dynamic scheduling by means of meta-heuristic and multi-agent systems. Scheduling is an important aspect of automation in manufacturing systems. Several contributions have been proposed, but the problem is far from being solved satisfactorily, especially if scheduling concerns real world applications. The proposed multi-agent scheduling system assumes the existence of several resource agents (which are decision-making entities based on meta-heuristics) distributed inside the manufacturing system that interact with other agents in order to obtain optimal or near-optimal global performances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A manufacturing system has a natural dynamic nature observed through several kinds of random occurrences and perturbations on working conditions and requirements over time. For this kind of environment it is important the ability to efficient and effectively adapt, on a continuous basis, existing schedules according to the referred disturbances, keeping performance levels. The application of Meta-Heuristics and Multi-Agent Systems to the resolution of this class of real world scheduling problems seems really promising. This paper presents a prototype for MASDScheGATS (Multi-Agent System for Distributed Manufacturing Scheduling with Genetic Algorithms and Tabu Search).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization.