432 resultados para Jeltsch conjecture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A U(2,2 vertical bar 4)-invariant A-model constructed from fermionic superfields has recently been proposed as a sigma model for the superstring on AdS(5) X S(5). After explaining the relation of this A-model with the pure spinor formalism, the A-model action is expressed as a gauged linear sigma model. In the zero radius limit, the Coulomb branch of this sigma model is interpreted as D-brane holes which are related to gauge-invariant N = 4 d=4 super-Yang-Mills operators. As in the worldsheet derivation of open-closed duality for Chem-Simons theory, this construction may lead to a worldsheet derivation of the Maldacena conjecture. Intriguing connections to the twistorial formulation of N = 4 Yang-Mills are also noted. (Republished with permission of JHEP from JHEP 0803:031, 2008.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conjecture by Harder shows a surprising congruence between the coefficients of “classical” modular forms and the Hecke eigenvalues of corresponding Siegel modular forms, contigent upon “large primes” dividing the critical values of the given classical modular form. Harder’s Conjecture has already been verified for one-dimensional spaces of classical and Siegel modular forms (along with some two-dimensional cases), and for primes p 37. We verify the conjecture for higher-dimensional spaces, and up to a comparable prime p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signatur des Originals: S 36/F00874

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a microcanonical Monte Carlo simulation of the site-diluted Potts model in three dimensions with eight internal states, partly carried out on the citizen supercomputer Ibercivis. Upon dilution, the pure model’s first-order transition becomes of the second order at a tricritical point. We compute accurately the critical exponents at the tricritical point. As expected from the Cardy-Jacobsen conjecture, they are compatible with their random field Ising model counterpart. The conclusion is further reinforced by comparison with older data for the Potts model with four states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper it is shown that a conjecture of Lapidus and van Frankenhuysen of 2003 on the existence of a vertical line such that the density of the complex dimensions of nonlattice fractal strings with M scaling ratios off this line vanishes in the limit as M→∞, fails on the class of nonlattice self-similar fractal strings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bibliography: leaf 6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocopy. [Washington?] Clearinghouse for Federal Scientific and Technical Information of the U. S. Dept. of Commerce [1966?]