430 resultados para Isomorphic factorization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the application of the conjugate gradient method to the solution of large, symmetric indefinite linear systems. Special emphasis is put on the use of constraint preconditioners and a new factorization that can reduce the number of flops required by the preconditioning step. Results concerning the eigenvalues of the preconditioned matrix and its minimum polynomial are given. Numerical experiments validate these conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider conjugate-gradient like methods for solving block symmetric indefinite linear systems that arise from saddle-point problems or, in particular, regularizations thereof. Such methods require preconditioners that preserve certain sub-blocks from the original systems but allow considerable flexibility for the remaining blocks. We construct a number of families of implicit factorizations that are capable of reproducing the required sub-blocks and (some) of the remainder. These generalize known implicit factorizations for the unregularized case. Improved eigenvalue clustering is possible if additionally some of the noncrucial blocks are reproduced. Numerical experiments confirm that these implicit-factorization preconditioners can be very effective in practice.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a Lévy process ξ=(ξt)t≥0 drifting to −∞, we define the so-called exponential functional as follows: Formula Under mild conditions on ξ, we show that the following factorization of exponential functionals: Formula holds, where × stands for the product of independent random variables, H− is the descending ladder height process of ξ and Y is a spectrally positive Lévy process with a negative mean constructed from its ascending ladder height process. As a by-product, we generate an integral or power series representation for the law of Iξ for a large class of Lévy processes with two-sided jumps and also derive some new distributional properties. The proof of our main result relies on a fine Markovian study of a class of generalized Ornstein–Uhlenbeck processes, which is itself of independent interest. We use and refine an alternative approach of studying the stationary measure of a Markov process which avoids some technicalities and difficulties that appear in the classical method of employing the generator of the dual Markov process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schrdinger model [1, 2], that the three-particle S-matrix is factorizable in the first non-trivial order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonnegative matrix factorization based methods provide one of the simplest and most effective approaches to text mining. However, their applicability is mainly limited to analyzing a single data source. In this paper, we propose a novel joint matrix factorization framework which can jointly analyze multiple data sources by exploiting their shared and individual structures. The proposed framework is flexible to handle any arbitrary sharing configurations encountered in real world data. We derive an efficient algorithm for learning the factorization and show that its convergence is theoretically guaranteed. We demonstrate the utility and effectiveness of the proposed framework in two real-world applications–improving social media retrieval using auxiliary sources and cross-social media retrieval. Representing each social media source using their textual tags, for both applications, we show that retrieval performance exceeds the existing state-of-the-art techniques. The proposed solution provides a generic framework and can be applicable to a wider context in data mining wherever one needs to exploit mutual and individual knowledge present across multiple data sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, nonnegative matrix factorization (NMF) attracts more and more attentions for the promising of wide applications. A problem that still remains is that, however, the factors resulted from it may not necessarily be realistically interpretable. Some constraints are usually added to the standard NMF to generate such interpretive results. In this paper, a minimum-volume constrained NMF is proposed and an efficient multiplicative update algorithm is developed based on the natural gradient optimization. The proposed method can be applied to the blind source separation (BSS) problem, a hot topic with many potential applications, especially if the sources are mutually dependent. Simulation results of BSS for images show the superiority of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonnegative matrix factorization (NMF) is widely used in signal separation and image compression. Motivated by its successful applications, we propose a new cryptosystem based on NMF, where the nonlinear mixing (NLM) model with a strong noise is introduced for encryption and NMF is used for decryption. The security of the cryptosystem relies on following two facts: 1) the constructed multivariable nonlinear function is not invertible; 2) the process of NMF is unilateral, if the inverse matrix of the constructed linear mixing matrix is not nonnegative. Comparing with Lin's method (2006) that is a theoretical scheme using one-time padding in the cryptosystem, our cipher can be used repeatedly for the practical request, i.e., multitme padding is used in our cryptosystem. Also, there is no restriction on statistical characteristics of the ciphers and the plaintexts. Thus, more signals can be processed (successfully encrypted and decrypted), no matter they are correlative, sparse, or Gaussian. Furthermore, instead of the number of zero-crossing-based method that is often unstable in encryption and decryption, an improved method based on the kurtosis of the signals is introduced to solve permutation ambiguities in waveform reconstruction. Simulations are given to illustrate security and availability of our cryptosystem.