975 resultados para Iron-binding
Resumo:
Damage from free radicals has been demonstrated in susceptible neuronal populations in cases of Alzheimer disease. In this study, we investigated whether iron, a potent source of the highly reactive hydroxyl radical that is generated by the Fenton reaction with H2O2, might contribute to the source of radicals in Alzheimer disease. We found, using a modified histochemical technique that relies on the formation of mixed valence iron complexes, that redox-active iron is associated with the senile plaques and neurofibrillary tangles—the pathological hallmark lesions of this disease. This lesion-associated iron is able to participate in in situ oxidation and readily catalyzes an H2O2-dependent oxidation. Furthermore, removal of iron was completely effected using deferoxamine, after which iron could be rebound to the lesions. Characterization of the iron-binding site suggests that binding is dependent on available histidine residues and on protein conformation. Taken together, these findings indicate that iron accumulation could be an important contributor toward the oxidative damage of Alzheimer disease.
Resumo:
The speciation of strongly chelated iron during the 22-day course of an iron enrichment experiment in the Atlantic sector of the Southern Ocean deviates strongly from ambient natural waters. Three iron additions (ferrous sulfate solution) were conducted, resulting in elevated dissolved iron concentrations (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) and significant Fe(II) levels (Croot, P.L., Laan, P., Nishioka, J., Strass, V., Cisewski, B., Boye, M., Timmermans, K.R., Bellerby, R.G., Goldson, L., Nightingale, P., de Baar, H.J.W., 2005, Spatial and Temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment. Marine Chemistry, doi:10.1016/j.marchem.2004.06.041). Repeated vertical profiles for dissolved (filtrate < 0.2 µm) Fe(III)-binding ligands indicated a production of chelators in the upper water column induced by iron fertilizations. Abiotic processes (chemical reactions) and an inductive biologically mediated mechanism were the likely sources of the dissolved ligands which existed either as inorganic amorphous phases and/or as strong organic chelators. Discrete analysis on ultra-filtered samples (< 200 kDa) suggested that the produced ligands would be principally colloidal in size (> 200 kDa-< 0.2 µm), as opposed to the soluble fraction (< 200 kDa) which dominated prior to the iron infusions. Yet these colloidal ligands would exist in a more transient nature than soluble ligands which may have a longer residence time. The production of dissolved Fe-chelators was generally smaller than the overall increase in dissolved iron in the surface infused mixed layer, leaving a fraction (about 13-40%) of dissolved Fe not bound by these dissolved Fe-chelators. It is suggested that this fraction would be inorganic colloids. The unexpected persistence of such high inorganic colloids concentrations above inorganic Fe-solubility limits illustrates the peculiar features of the chemical iron cycling in these waters. Obviously, the artificial about hundred-fold increase of overall Fe levels by addition of dissolved inorganic Fe(II) ions yields a major disruption of the natural physical-chemical abundances and reactivity of Fe in seawater. Hence the ensuing responses of the plankton ecosystem, while in itself significant, are not necessarily representative for a natural enrichment, for example by dry or wet deposition of aeolian dust. Ultimately, the temporal changes of the Fe(III)-binding ligand and iron concentrations were dominated by the mixing events that occurred during EISENEX, with storms leading to more than an order of magnitude dilution of the dissolved ligands and iron concentrations. This had strongest impact on the colloidal size class (> 200 kDa-< 0.2 µm) where a dramatic decrease of both the colloidal ligand and the colloidal iron levels (Nishioka, J., Takeda, S., de Baar, H.J.W., Croot, P.L., Boye, M., Laan, P., Timmermans, K.R., 2005, Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean. Marine Chemistry, doi:10.1016/j.marchem.2004.06.040) was observed.
Resumo:
The unconjugated pterin neopterin is secreted by macrophages activated by interferon-gamma and hence, the level of neopterin in serum may be used as a marker of a cellular immune response in a patient. Serum neopterin levels were measured by high performance liquid chromatography (HPLC) in 28 Parkinson's disease (PD) patients and 28 age and sex matched controls. The level of serum neopterin was significantly elevated in PD compared with controls suggesting immune activation in these patients. The level of neopterin was negatively correlated with the level of binding of gallium to transferrin (Tf) but unrelated to the level of iron binding. Hence, in PD, it is possible that a cellular immune response may be important in the pathogenesis of the disease. One effect of the cellular immune response may be a reduction in the binding of metals other than iron to Tf and this could also be a factor in PD.
Resumo:
The microbial demand for iron is often met by the elaboration of siderophores into the surrounding medium and expression of cognate outer membrane receptors for the ferric siderophore complexes. Conditions of iron limitation, such as those encountered in vivo, cause Pseudomonas aeruginosa to express two high-affinity iron-uptake systems based on pyoverdin and pyochelin. These systems will operate both in the organism's natural habitat, soil and water, where the solubility of iron at neutral pH is extremely low, and in the human host where the availability of free iron is too low to sustain bacterial growth due to the iron-binding glycoproteins transferrin and lactoferrin. Cross-feeding and radiolabelled iron uptake experiments demonstrated that pyoverdin biosynthesis and uptake were highly heterogeneous amongst P.aeruginosa strains, that growth either in the presence of pyoverdin or pyochelin resulted in induction of specific IROMPs, and that induction of iron uptake is siderophore-specific. The P.aeruginosa Tn5 mutant PH1 is deficient in ferripyoverdin uptake and resistant to pyocin Sa, suggesting that the site of interaction of pyocin Sa is a ferripyoverdin receptor. Additional Tn5 mutants appeared to exploit different strategies to achieve pyocin Sa-resistance, involving modifications in expression of pyoverdin-mediated iron uptake, indicating that complex regulatory systems exist to enable these organisms to compete effectively for iron. Modulation of expression of IROMPs prompted a study of the mechanism of uptake of a semi-synthetic C(7) α-formamido substituted cephalosporin BRL 41897A. Sensitivity to this agent correlated with expression of the 75 kDa ferri-pyochelin receptor and demonstrated the potential of high-affinity iron uptake systems for targeting of novel antibiotics. Studies with ferri-pyoverdin uptake-deficient mutant PH1 indicated that expression of outer membrane protein G (OprG), which is usually expressed under iron-rich conditions and repressed under iron-deficient conditions, was perturbed. Attempts were made to clone the oprG gene using a degenerate probe based on the N-terminal amino acid sequence. A strongly hybridising HindIll restriction fragment was cloned and sequenced, but failed to reveal an open reading frame correspondmg to OprG. However, there appears to be good evidence that a part of the gene codmg for the hydrophilic membrane-associated ATP-binding component of a hitherto uncharacterised periplasmic- binding-protein-dependent transport system has been isolated. The full organisation and sequence of the operon, and substrate for this putative transport system, are yet: to be elucidated,
Resumo:
Hydrothermal vent fluids are highly enriched in iron (Fe) compared to ambient seawater, and organic ligands may play a role in facilitating the transport of some hydrothermal Fe into the open ocean. This is important since Fe is a limiting micronutrient for primary production in large parts of the world's surface ocean. We have investigated the concentration and speciation of Fe in several vent fluid and plume samples from the Nifonea vent field, Coriolis Troughs, New Hebrides Island Arc, South Pacific Ocean using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV) with salicylaldoxime (SA) as the artificial ligand. Our results for total dissolved Fe (dFe) in the buoyant hydrothermal plume samples showed concentrations up to 3.86 µM dFe with only a small fraction between 1.1 and 11.8% being chemically labile. Iron binding ligand concentrations ([L]) were found in µM level with strong conditional stability constants up to logKFeL,Fe3+ of 22.9. Within the non-buoyant hydrothermal plume above the Nifonea vent field, up to 84.7% of the available Fe is chemically labile and [L] concentrations up to 97 nM were measured. [L] was consistently in excess of Felab, indicating that all available Fe is being complexed, which in combination with high Felab values in the non-buoyant plume, signifies that a high fraction of hydrothermal dFe is potentially being transported away from the plume into the surrounding waters, contributing to the global oceanic Fe budget.
Resumo:
Background: Iron deficiency, and specifically iron deficiency anaemia, remains one of the most severe and important nutritional deficiencies in the world today. Objective: To estimate the prevalence and associated factors for iron deficiency anaemia among pre-school children in Lagos. Methodology: The study was conducted from December 2009 to February 2010 at the outpatient clinics of Lagos State University Teaching Hospital, Lagos. Serum iron, total iron binding capacity, transferrin saturation and serum ferritin were assayed in subjects. The primary outcome measured was iron deficiency anaemia established based on the following criteria: hemoglobin <11.0 g/dl1 plus 2 or more of the following: MCV <70fl, transferrin saturation <10% or serum ferritin <15ng/ dL. Statistical analysis included Pearson Chi square analysis and logistic regression analysis. Results: A total of 87 apparently healthy subjects were recruited. Only one subject had iron depletion and this child belonged to the ≤ 2 years age category. None of the recruited subjects had iron deficiency without anaemia. Nine of the study subjects (10.11%) had iron deficiency anaemia. The prevalence of iron deficiency anaemia was significantly higher among younger age group than in the older age group (19.1% Vs 2.1%, p = 0.022). The prevalence of iron deficiency anaemia was significantly higher among subjects with weight-for-age, and weight-for-height Z scores below two standard scores (83.3% and 75.0% respectively, p = <0.001 and 0.001 respectively). Conclusion: The overall prevalence of iron deficiency anaemia among study subjects was 10.11%. Iron deficiency anaemia was more common in children aged two years and below. Weight-for-age and weight-for-height Z scores below minus two standard scores were strongly associated with iron deficiency anaemia.
Resumo:
Introduction: Studies have shown that oxidative stress, found in patients with type 2 diabetes, may be due to changes in the metabolism of minerals, such as magnesium and iron. Data related to compartmentalization of these minerals in diabetes are scarce and controversial. Objective: This study assessed the influence of magnesium on biochemical parameters of iron and oxidative stress in patients with type 2 diabetes. Methods: A case-control study in male and female subjects aged 27-59 years, divided into two groups: type 2 diabetes (n=40) and control (n=48). Intake of magnesium and iron was assessed by three-day food record. Plasma, erythrocyte and urinary levels of magnesium, serum iron, ferritin, total iron binding capacity, fasting glucose, glycated hemoglobin, insulin, creatinine clearance and plasma thiobarbituric acid reactive substances (TBARS) were analyzed. Results and Discussion: Magnesium intake and plasma magnesium were lower in diabetic subjects. There was low urinary magnesium excretion, with no difference between groups. Although normal, the diabetic group had lower serum iron and ferritin concentrations compared to control subjects. Plasma TBARS in diabetic patients was higher than control while creatinine clearance was lower. An inverse correlation between erythrocyte magnesium and serum iron and ferritin was observed in the diabetes group. Conclusions: Diabetes induced hypomagnesemia and this, associated with chronic hyperglycemia, may have enhanced oxidative stress. Erythrocyte magnesium may have contributed to prevent iron overload and worsening of oxidative stress and hyperglycemic status.
Resumo:
This thesis describes research pursued in two areas, both involving the design and synthesis of sequence specific DNA-cleaving proteins. The first involves the use of sequence-specific DNA-cleaving metalloproteins to probe the structure of a protein-DNA complex, and the second seeks to develop cleaving moieties capable of DNA cleavage through the generation of a non-diffusible oxidant under physiological conditions.
Chapter One provides a brief review of the literature concerning sequence-specific DNA-binding proteins. Chapter Two summarizes the results of affinity cleaving experiments using leucine zipper-basic region (bZip) DNA-binding proteins. Specifically, the NH_2-terminal locations of a dimer containing the DNA binding domain of the yeast transcriptional activator GCN4 were mapped on the binding sites 5'-CTGACTAAT-3' and 5'ATGACTCTT- 3' using affinity cleaving. Analysis of the DNA cleavage patterns from Fe•EDTA-GCN4(222-281) and (226-281) dimers reveals that the NH_2-termini are in the major groove nine to ten base pairs apart and symmetrically displaced four to five base pairs from the central C of the recognition site. These data are consistent with structural models put forward for this class of DNA binding proteins. The results of these experiments are evaluated in light of the recently published crystal structure for the GCN4-DNA complex. Preliminary investigations of affinity cleaving proteins based on the DNA-binding domains of the bZip proteins Jun and Fos are also described.
Chapter Three describes experiments demonstrating the simultaneous binding of GCN4(226-281) and 1-Methylimidazole-2-carboxamide-netropsin (2-ImN), a designed synthetic peptide which binds in the minor groove of DNA at 5'-TGACT-3' sites as an antiparallel, side-by-side dimer. Through the use of Fe•EDTA-GCN4(226-281) as a sequence-specific footprinting agent, it is shown that the dimeric protein GCN4(226-281) and the dimeric peptide 2- ImN can simultaneously occupy their common binding site in the major and minor grooves of DNA, respectively. The association constants for 2-ImN in the presence and in the absence of Fe•EDTA-GCN4(226-281) are found to be similar, suggesting that the binding of the two dimers is not cooperative.
Chapter Four describes the synthesis and characterization of PBA-β-OH-His- Hin(139-190), a hybrid protein containing the DNA-binding domain of Hin recombinase and the putative iron-binding and oxygen-activating domain of the antitumor antibiotic bleomycin. This 54-residue protein, comprising residues 139-190 of Hin recombinase with the dipeptide pyrimidoblamic acid-β-hydroxy-L-histidine (PBA-β-OH-His) at the NH2 terminus, was synthesized by solid phase methods. PBA-β-OH-His-Hin(139- 190) binds specifically to DNA at four distinct Hin binding sites with affinities comparable to those of the unmodified Hin(139-190). In the presence of dithiothreitol (DTT), Fe•PB-β-OH-His-Hin(139-190) cleaves DNA with specificity remarkably similar to that of Fe•EDTA-Hin(139-190), although with lower efficiency. Analysis of the cleavage pattern suggests that DNA cleavage is mediated through a diffusible species, in contrast with cleavage by bleomycin, which occurs through a non-diffusible oxidant.
Resumo:
Human lactoferrin (hLF) is an iron-binding protein with antimicrobial and immunomodulatory activities. hLF cDNA was transferred into grass carp via electroporated sperm. The production of transgenic fish was as high as 55% tinder the best parameters. 2(11) pulses and 20-min incubation. The expression of the transgene was demonstrated by the detection of hLF mRNA by RT-PCR. We also investigated the response of G(0) transgenic grass carp to Aeromonas hydrophila infection. Serum lysozyme activities (P>0.05) and phagocytic activities of kidney cells (P<0.05) were measured in transgenic individuals. The transgenic fish not only cleared A. hydrophila significantly faster than the control carp (P<0.05), but also showed enhanced phagocytic activities. The result shows that hLF has immunomodulatory activities in hLF-transgenic grass carp. The transgenic grass carp exhibited enhanced immunity to A. hydrophila infection. These results reveal that the mechanisms of disease resistance are different between hLF-transgenic plants and hLF-transgenic grass carp. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ferritins are conserved Iron storage proteins that exist in most living organisms and play an essential role in Iron homeostasis. In this study, we reported the identification and analysis a ferritin M subunit, SmFerM, from turbot Scophthalmus maximus. The full length cDNA of SmFerM contains a 5'-untranslated region (UTR) of 232 bp, an open reading frame (ORF) of 531 bp, and a 3'-UTR of 196 bp The ORF encodes a putative protein of 176 amino acids, which shares extensive sequence identities with the M terrains of several fish species. In silico analysis identified in SmFerM both the ferroxidase center of mammalian H ferritins and the iron nucleation site of mammalian L ferritins. Quantitative real time reverse transcriptase-PCR analysis indicated that SmFerM expression was highest in muscle and lowest in heart and responded positively to experimental challenges with bacterial pathogens and poly(I center dot C) Exposure of cultured turbot hepatocytes to treatment of stress inducers (iron, copper, and H2O2) significantly upregulated the expression of SmFerM in a dose dependent manner. Iron chelating analysis showed that recombinant SmFerM purified from Escherichia coli exhibited apparent iron binding activity. These results suggest that SmFerM is a functional M ferritin and is likely to play a role in iron sequestration and protection against oxidative stress and microbial infection (C) 2010 Elsevier Inc All rights reserved
Resumo:
The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.
Resumo:
RESUMO - O doseamento da protoporfirina-zinco (PPZ) vem sendo preconizado como indicador a utilizar em primeira linha nos programas de monitorização biológica da exposição profissional a chumbo. A PPZ apresenta um elevado grau de associação com a plumbemia e representa, num dado momento, o efeito metabólico do chumbo sobre a ferro- -quelatase (enzima catalisadora da incorporação do ferro na protoporfirina IX) ao longo dos anteriores cerca de três meses. Num estudo incidindo sobre 67 trabalhadores expostos a chumbo, do sexo masculino, os autores avaliaram a variação da PPZ em relação à plumbemia determinada num determinado momento (t0) e em sucessivos doseamentos efectuados cerca de 30 (t1), 60 (t2) e 90 (t3) dias após esse momento. Da análise dos resultados obtidos conclui-se que em trabalhadores expostos a chumbo de modo considerado estável (com níveis de Pb-S entre 30 e 78 μg/dL) a PPZ não variou significativamente ao longo do período de tempo considerado. Deste modo, parece poder concluir-se que os resultados de PPZ são representativos do nível de exposição (inferida pelos níveis de dose interna) pelo menos em relação ao período de cerca de três meses anteriores, correspondendo à resposta orgânica consequente à dose em causa.
Resumo:
At least three ferritins are found in the bacterium Escherichia coli, the heme-containing bacterioferritin (EcBFR) and two non-heme bacterial ferritins (EcFtnA and EcFtnB). In addition to the conserved A- and B-sites of the diiron ferroxidase center, EcFtnA has a third iron-binding site (the C-site) of unknown function that is nearby the diiron site. In the present work, the complex chemistry of iron oxidation and deposition in EcFtnA has been further defined through a combination of oximetry, pH stat, stopped-flow and conventional kinetics, UV-visible, fluorescence and EPR spectroscopic measurements on the wildtype protein and site-directed variants of the A-, B- and C-sites. The data reveal that, while H2O2 is a product of dioxygen reduction in EcFtnA and oxidation occurs with a stoichiometry of Fe(II)/O2 ~ 3:1, most of the H2O2 produced is consumed in subsequent reactions with a 2:1 Fe(II)/H2O2 stoichiometry, thus suppressing hydroxyl radical formation. While the A- and B-sites are essential for rapid iron oxidation, the C-site slows oxidation and suppresses iron turnover at the ferroxidase center. A tyrosyl radical, assigned to Tyr24 near the ferroxidase center, is formed during iron oxidation and its possible significance to the function of the protein is discussed. Taken as a whole, the data indicate that there are multiple iron-oxidation pathways in EcFtnA with O2 and H2O2 as oxidants. Furthermore, the data are inconsistent with the C-site being a transit site, providing iron to the A- and B-sites, and does not support a universal mechanism for iron oxidation in all ferritins as recently proposed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)