982 resultados para Inverse Approach
Resumo:
To understand the dynamic mechanisms of the mechanical milling process in a vibratory mill, it is necessary to determine the characteristics of the impact forces associated with the collision events. However, it is difficult to directly measure the impact force in an operating mill. This paper describes an inverse technique for the prediction of impact forces from acceleration measurements on a vibratory ball mill. The characteristics of the vibratory mill have been investigated by the modal testing technique, and its system modes have been identified. In the modelling of the system vibration response to the impact forces, two modal equations have been used to describe the modal responses. The superposition of the modal responses gives rise to the total response of the system. A method based on an optimisation approach has been developed to predict the impact forces by minimising the difference between the measured acceleration of the vibratory ball mill and the predicted acceleration from the solution of the modal equations. The predicted and measured impact forces are in good agreement. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
This article proposes a more accurate approach to dopant extraction using combined inverse modeling and forward simulation of scanning capacitance microscopy (SCM) measurements on p-n junctions. The approach takes into account the essential physics of minority carrier response to the SCM probe tip in the presence of lateral electric fields due to a p-n junction. The effects of oxide fixed charge and interface state densities in the grown oxide layer on the p-n junction samples were considered in the proposed method. The extracted metallurgical and electrical junctions were compared to the apparent electrical junction obtained from SCM measurements. (C) 2002 American Institute of Physics.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.
Resumo:
Paper presented at Geo-Spatial Crossroad GI_Forum, Salzburg, Austria.
Resumo:
This study analyses financial data using the result characterization of a self-organized neural network model. The goal was prototyping a tool that may help an economist or a market analyst to analyse stock market series. To reach this goal, the tool shows economic dependencies and statistics measures over stock market series. The neural network SOM (self-organizing maps) model was used to ex-tract behavioural patterns of the data analysed. Based on this model, it was de-veloped an application to analyse financial data. This application uses a portfo-lio of correlated markets or inverse-correlated markets as input. After the anal-ysis with SOM, the result is represented by micro clusters that are organized by its behaviour tendency. During the study appeared the need of a better analysis for SOM algo-rithm results. This problem was solved with a cluster solution technique, which groups the micro clusters from SOM U-Matrix analyses. The study showed that the correlation and inverse-correlation markets projects multiple clusters of data. These clusters represent multiple trend states that may be useful for technical professionals.
Resumo:
Given an algebraic curve in the complex affine plane, we describe how to determine all planar polynomial vector fields which leave this curve invariant. If all (finite) singular points of the curve are nondegenerate, we give an explicit expression for these vector fields. In the general setting we provide an algorithmic approach, and as an alternative we discuss sigma processes.
Resumo:
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.
Resumo:
The identification of compositional changes in fumarolic gases of active and quiescent volcanoes is one of the mostimportant targets in monitoring programs. From a general point of view, many systematic (often cyclic) and randomprocesses control the chemistry of gas discharges, making difficult to produce a convincing mathematical-statisticalmodelling.Changes in the chemical composition of volcanic gases sampled at Vulcano Island (Aeolian Arc, Sicily, Italy) fromeight different fumaroles located in the northern sector of the summit crater (La Fossa) have been analysed byconsidering their dependence from time in the period 2000-2007. Each intermediate chemical composition has beenconsidered as potentially derived from the contribution of the two temporal extremes represented by the 2000 and 2007samples, respectively, by using inverse modelling methodologies for compositional data. Data pertaining to fumarolesF5 and F27, located on the rim and in the inner part of La Fossa crater, respectively, have been used to achieve theproposed aim. The statistical approach has allowed us to highlight the presence of random and not random fluctuations,features useful to understand how the volcanic system works, opening new perspectives in sampling strategies and inthe evaluation of the natural risk related to a quiescent volcano
Resumo:
We introduce a variation of the proof for weak approximations that issuitable for studying the densities of stochastic processes which areevaluations of the flow generated by a stochastic differential equation on a random variable that maybe anticipating. Our main assumption is that the process and the initial random variable have to be smooth in the Malliavin sense. Furthermore if the inverse of the Malliavin covariance matrix associated with the process under consideration is sufficiently integrable then approximations fordensities and distributions can also be achieved. We apply theseideas to the case of stochastic differential equations with boundaryconditions and the composition of two diffusions.
Spanning tests in return and stochastic discount factor mean-variance frontiers: A unifying approach
Resumo:
We propose new spanning tests that assess if the initial and additional assets share theeconomically meaningful cost and mean representing portfolios. We prove their asymptoticequivalence to existing tests under local alternatives. We also show that unlike two-step oriterated procedures, single-step methods such as continuously updated GMM yield numericallyidentical overidentifyng restrictions tests, so there is arguably a single spanning test.To prove these results, we extend optimal GMM inference to deal with singularities in thelong run second moment matrix of the influence functions. Finally, we test for spanningusing size and book-to-market sorted US stock portfolios.
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
The inverse scattering problem concerning the determination of the joint time-delayDoppler-scale reflectivity density characterizing continuous target environments is addressed by recourse to the generalized frame theory. A reconstruction formula,involving the echoes of a frame of outgoing signals and its corresponding reciprocalframe, is developed. A ‘‘realistic’’ situation with respect to the transmission ofa finite number of signals is further considered. In such a case, our reconstruction formula is shown to yield the orthogonal projection of the reflectivity density onto a subspace generated by the transmitted signals.