973 resultados para Intrinsic ferromagnetism
Resumo:
A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.
Resumo:
PURPOSE: To determine the value of applying finger trap distraction during direct MR arthrography of the wrist to assess intrinsic ligament and triangular fibrocartilage complex (TFCC) tears. MATERIALS AND METHODS: Twenty consecutive patients were prospectively investigated by three-compartment wrist MR arthrography. Imaging was performed with 3-T scanners using a three-dimensional isotropic (0.4 mm) T1-weighted gradient-recalled echo sequence, with and without finger trap distraction (4 kg). In a blind and independent fashion, two musculoskeletal radiologists measured the width of the scapholunate (SL), lunotriquetral (LT) and ulna-TFC (UTFC) joint spaces. They evaluated the amount of contrast medium within these spaces using a four-point scale, and assessed SL, LT and TFCC tears, as well as the disruption of Gilula's carpal arcs. RESULTS: With finger trap distraction, both readers found a significant increase in width of the SL space (mean Δ = +0.1mm, p ≤ 0.040), and noticed more contrast medium therein (p ≤ 0.035). In contrast, the differences in width of the LT (mean Δ = +0.1 mm, p ≥ 0.057) and UTFC (mean Δ = 0mm, p ≥ 0.728) spaces, as well as the amount of contrast material within these spaces were not statistically significant (p = 0.607 and ≥ 0.157, respectively). Both readers detected more SL (Δ = +1, p = 0.157) and LT (Δ = +2, p = 0.223) tears, although statistical significance was not reached, and Gilula's carpal arcs were more frequently disrupted during finger trap distraction (Δ = +5, p = 0.025). CONCLUSION: The application of finger trap distraction during direct wrist MR arthrography may enhance both detection and characterisation of SL and LT ligament tears by widening the SL space and increasing the amount of contrast within the SL and LT joint spaces.
Resumo:
B and T lymphocyte attenuator (BTLA) is a negative regulator of T cell activation, but its function in vivo is not well characterized. Here we show that mice deficient in full-length BTLA or its ligand, herpesvirus entry mediator, had increased number of memory CD8(+) T cells. The memory CD8(+) T cell phenotype resulted from a T cell-intrinsic perturbation of the CD8(+) T cell pool. Naive BTLA-deficient CD8(+) T cells were more efficient than wild-type cells at generating memory in a competitive antigen-specific system. This effect was independent of the initial expansion of the responding antigen-specific T cell population. In addition, BTLA negatively regulated antigen-independent homeostatic expansion of CD4(+) and CD8(+) T cells. These results emphasize two central functions of BTLA in limiting T cell activity in vivo.
Resumo:
Report for the scientific sojourn carried out at the Université Catholique de Louvain, Belgium, from March until June 2007. In the first part, the impact of important geometrical parameters such as source and drain thickness, fin spacing, spacer width, etc. on the parasitic fringing capacitance component of multiple-gate field-effect transistors (MuGFET) is deeply analyzed using finite element simulations. Several architectures such as single gate, FinFETs (double gate), triple-gate represented by Pi-gate MOSFETs are simulated and compared in terms of channel and fringing capacitances for the same occupied die area. Simulations highlight the great impact of diminishing the spacing between fins for MuGFETs and the trade-off between the reduction of parasitic source and drain resistances and the increase of fringing capacitances when Selective Epitaxial Growth (SEG) technology is introduced. The impact of these technological solutions on the transistor cut-off frequencies is also discussed. The second part deals with the study of the effect of the volume inversion (VI) on the capacitances of undoped Double-Gate (DG) MOSFETs. For that purpose, we present simulation results for the capacitances of undoped DG MOSFETs using an explicit and analytical compact model. It monstrates that the transition from volume inversion regime to dual gate behaviour is well simulated. The model shows an accurate dependence on the silicon layer thickness,consistent withtwo dimensional numerical simulations, for both thin and thick silicon films. Whereas the current drive and transconductance are enhanced in volume inversion regime, our results show thatintrinsic capacitances present higher values as well, which may limit the high speed (delay time) behaviour of DG MOSFETs under volume inversion regime.
Resumo:
The gut mucosal epithelium separates the host from the microbiota, but enteropathogens such as Salmonella Typhimurium (S.Tm) can invade and breach this barrier. Defenses against such acute insults remain incompletely understood. Using a murine model of Salmonella enterocolitis, we analyzed mechanisms limiting pathogen loads in the epithelium during early infection. Although the epithelium-invading S.Tm replicate initially, this intraepithelial replicative niche is restricted by expulsion of infected enterocytes into the lumen. This mechanism is compromised if inflammasome components (NAIP1-6, NLRC4, caspase-1/-11) are deleted, or ablated specifically in the epithelium, resulting in ∼100-fold higher intraepithelial loads and accelerated lymph node colonization. Interestingly, the cytokines downstream of inflammasome activation, interleukin (IL)-1α/β and IL-18, appear dispensable for epithelial restriction of early infection. These data establish the role of an epithelium-intrinsic inflammasome, which drives expulsion of infected cells to restrict the pathogen's intraepithelial proliferation. This may represent a general defense mechanism against mucosal infections.
Resumo:
Phenothiazine drugs - fluphenazine, chlorpromazine, methotrimeprazine and trifluoperazine - were evaluated as modulating agents against Brazilian chloroquine-resistant fresh isolates of Plasmodium falciparum. Aiming to simulate therapeutic schedules, chloroquine was employed at the concentration used for sensitive falciparum malaria treatment and anti-psychotic therapeutic concentrations of the phenothiazine drugs were adopted in two-fold serial dilutions. The in vitro microtechnique for drug susceptibility was employed. Unlike earlier reported data, the phenothiazine modulating effect was not observed. However, all the drugs demonstrated intrinsic antiplasmodial activity in concentrations lower than those described in the literature. In addition, IC50 estimates have been shown to be inferior to the usual anti-psychotic therapeutic concentrations. Statistical analysis also suggested an increase in the parasitaemia rate or, even, a predominant antiparasitic effect of phenothiazine over chloroquine when used in combination.
Resumo:
The impact of curative radiotherapy depends mainly on the total dose delivered homogenously in the targeted volume. Nevertheless, the dose delivered to the surrounding healthy tissues may reduce the therapeutic ratio of many radiation treatments. In a same population treated in one center with the same technique, it appears that individual radiosensitivity clearly exists, namely in terms of late side effects that are in principle non-reversible. This review details the different radiobiological approaches that have been developed to better understand the mechanisms of radiation-induced late effects. We also present the possibilities of clinical use of predictive assays in the close future.
Resumo:
A condition needed for testing nested hypotheses from a Bayesianviewpoint is that the prior for the alternative model concentratesmass around the small, or null, model. For testing independencein contingency tables, the intrinsic priors satisfy this requirement.Further, the degree of concentration of the priors is controlled bya discrete parameter m, the training sample size, which plays animportant role in the resulting answer regardless of the samplesize.In this paper we study robustness of the tests of independencein contingency tables with respect to the intrinsic priors withdifferent degree of concentration around the null, and comparewith other “robust” results by Good and Crook. Consistency ofthe intrinsic Bayesian tests is established.We also discuss conditioning issues and sampling schemes,and argue that conditioning should be on either one margin orthe table total, but not on both margins.Examples using real are simulated data are given
Resumo:
INTRODUCTION Recurrence risk in breast cancer varies throughout the follow-up time. We examined if these changes are related to the level of expression of the proliferation pathway and intrinsic subtypes. METHODS Expression of estrogen and progesterone receptor, Ki-67, human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR) and cytokeratin 5/6 (CK 5/6) was performed on tissue-microarrays constructed from a large and uniformly managed series of early breast cancer patients (N = 1,249). Subtype definitions by four biomarkers were as follows: luminal A (ER + and/or PR+, HER2-, Ki-67 <14), luminal B (ER + and/or PR+, HER2-, Ki-67 ≥14), HER2-enriched (any ER, any PR, HER2+, any Ki-67), triple-negative (ER-, PR-, HER2-, any Ki-67). Subtype definitions by six biomarkers were as follows: luminal A (ER + and/or PR+, HER2-, Ki-67 <14, any CK 5/6, any EGFR), luminal B (ER + and/or PR+, HER2-, Ki-67 ≥14, any CK 5/6, any EGFR), HER2-enriched (ER-, PR-, HER2+, any Ki-67, any CK 5/6, any EGFR), Luminal-HER2 (ER + and/or PR+, HER2+, any Ki-67, any CK 5/6, any EGFR), Basal-like (ER-, PR-, HER2-, any Ki-67, CK5/6+ and/or EGFR+), triple-negative nonbasal (ER-, PR-, HER2-, any Ki-67, CK 5/6-, EGFR-). Each four- or six-marker defined intrinsic subtype was divided in two groups, with Ki-67 <14% or with Ki-67 ≥14%. Recurrence hazard rate function was determined for each intrinsic subtype as a whole and according to Ki-67 value. RESULTS Luminal A displayed a slow risk increase, reaching its maximum after three years and then remained steady. Luminal B presented most of its relapses during the first five years. HER2-enriched tumors show a peak of recurrence nearly twenty months post-surgery, with a greater risk in Ki-67 ≥14%. However a second peak occurred at 72 months but the risk magnitude was greater in Ki-67 <14%. Triple negative tumors with low proliferation rate display a smooth risk curve, but with Ki-67 ≥14% show sharp peak at nearly 18 months. CONCLUSIONS Each intrinsic subtype has a particular pattern of relapses over time which change depending on the level of activation of the proliferation pathway assessed by Ki-67. These findings could have clinical implications both on adjuvant treatment trial design and on the recommendations concerning the surveillance of patients.
Resumo:
Stone groundwood (SGW) is a fibrous matter commonly prepared in a high yield process, and mainly used for papermaking applications. In this work, the use of SGW fibers is explored as reinforcing element of polypropylene (PP) composites. Due to its chemical and superficial features, the use of coupling agents is needed for a good adhesion and stress transfer across the fiber-matrix interface. The intrinsic strength of the reinforcement is a key parameter to predict the mechanical properties of the composite and to perform an interface analysis. The main objective of the present work was the determination of the intrinsic tensile strength of stone groundwood fibers. Coupled and non-coupled PP composites from stone groundwood fibers were prepared. The influence of the surface morphology and the quality at interface on the final properties of the composite was analyzed and compared to that of fiberglass PP composites. The intrinsic tensile properties of stone groundwood fibers, as well as the fiber orientation factor and the interfacial shear strength of the current composites were determined
Resumo:
Intrinsic connections in the cat primary auditory field (AI) as revealed by injections of Phaseolus vulgaris leucoagglutinin (PHA-L) or biocytin, had an anisotropic and patchy distribution. Neurons, labelled retrogradely with PHA-L were concentrated along a dorsoventral stripe through the injection site and rostral to it; the spread of rostrally located neurons was greater after injections into regions of low rather than high characteristic frequencies. The intensity of retrograde labelling varied from weak and granular to very strong and Golgi-like. Out of 313 Golgi like retrogradely labelled neurons 79.6% were pyramidal, 17.2% multipolar, 2.6% bipolar, and 0.6% bitufted; 13.4% were putatively inhibitory, i.e. aspiny or sparsely spiny multipolar, or bitufted. Individual anterogradely labelled intrinsic axons were reconstructed for distances of 2 to 7 mm. Five main types were distinguished on the basis of the branching pattern and the location of synaptic specialisations. Type 1 axons travelled horizontally within layers II to VI and sent collaterals at regular intervals; boutons were only present in the terminal arborizations of these collaterals. Type 2 axons also travelled horizontally within layers II to VI and had rather short and thin collateral branches; boutons or spine-like protrusions occurred in most parts of the axon. Type 3 axons travelled obliquely through the cortex and formed a single terminal arborization, the only site where boutons were found. Type 4 axons travelled for some distance in layer I; they formed a heterogeneous group as to their collaterals and synaptic specializations. Type 5 axons travelled at the interface between layer VI and the white matter; boutons en passant, spine-like protrusions, and thin short branches with boutons en passant were frequent all along their trajectory. Thus, only some axonal types sustain the patchy pattern of intrinsic connectivity, whereas others are involved in a more diffuse connectivity.
Resumo:
When applying a Collaborative Learning Flow Pattern (CLFP) to structure sequences of activities in real contexts, one of the tasks is to organize groups of students according to the constraints imposed by the pattern. Sometimes,unexpected events occurring at runtime force this pre-defined distribution to be changed. In such situations, an adjustment of the group structures to be adapted to the new context is needed. If the collaborative pattern is complex, this group redefinitionmight be difficult and time consuming to be carried out in real time. In this context, technology can help on notifying the teacher which incompatibilitiesbetween the actual context and the constraints imposed by the pattern. This chapter presents a flexible solution for supporting teachers in the group organization profiting from the intrinsic constraints defined by a CLFPs codified in IMS Learning Design. A prototype of a web-based tool for the TAPPS and Jigsaw CLFPs and the preliminary results of a controlled user study are alsopresented as a first step towards flexible technological systems to support grouping tasks in this context.