994 resultados para Intestinal Development


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this survey was to assess the relationships between intestinal parasitism, nutritional status and hemoglobin level in children with Indian ascendancy living in an urban area in Brazilian Amazon. We carried out a cross-sectional survey obtaining anthropometric, parasitological and socioeconomic data, and hemoglobin measurements of children aged six to 84 months. Anthropometric data were expressed as z-scores for weight for age (WAZ), height for age (HAZ), weight for height (WHZ) and mid upper circumference for age (MUACZ) parameters. Parasitological examinations were performed through Ritchie (n = 307), Kato-Katz (n = 278), Baermann-Moraes (n = 238) and Safranin-methylene blue methods (n = 307). Hemoglobin measurements were obtained with a Hemocue® photometer (n = 282). Socioeconomic data were used in order to classify children in three family income strata (n = 242). Multiple linear regression analysis showed independent interactions between Giardia lamblia and WAZ (beta = -0.195, SE = 0.138, p = 0.003), WHZ (beta = -0.161, SE = 0.133, p = 0.018) and MUACZ (beta = -0.197, SE = 0.143, p = 0.011), controlling for age, sex, family income, Ascaris lumbricoides, and hookworm infection. Also, the multivariate model showed that the only variable associated with hemoglobin levels was age. Intestinal parasitism control should increase children's possibilities of full development in the studied area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction The number of reports of intestinal infections caused by Aeromonas spp. has increased significantly in recent years. In most clinical laboratories, identification of these bacteria is carried out by general phenotypic tests that sometimes do not accurately differentiate Aeromonas and Vibrio. Methods A duplex-polymerase chain reaction (PCR) was developed directed to 2 targets identifying Aeromonas spp. pathogenic to humans. Results The duplex-PCR results were reproducible and specific for Aeromonas spp. pathogenic to humans. Conclusions This method will allow differentiation between Vibrio and Aeromonas spp. in patients with in cholera-like symptoms and can also be used in water quality monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PhD in Chemical and Biological Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Critically ill patients depend on artificial nutrition for the maintenance of their metabolic functions and lean body mass, as well as for limiting underfeeding-related complications. Current guidelines recommend enteral nutrition (EN), possibly within the first 48 hours, as the best way to provide the nutrients and prevent infections. EN may be difficult to realize or may be contraindicated in some patients, such as those presenting anatomic intestinal continuity problems or splanchnic ischemia. A series of contradictory trials regarding the best route and timing for feeding have left the medical community with great uncertainty regarding the place of parenteral nutrition (PN) in critically ill patients. Many of the deleterious effects attributed to PN result from inadequate indications, or from overfeeding. The latter is due firstly to the easier delivery of nutrients by PN compared with EN increasing the risk of overfeeding, and secondly to the use of approximate energy targets, generally based on predictive equations: these equations are static and inaccurate in about 70% of patients. Such high uncertainty about requirements compromises attempts at conducting nutrition trials without indirect calorimetry support because the results cannot be trusted; indeed, both underfeeding and overfeeding are equally deleterious. An individualized therapy is required. A pragmatic approach to feeding is proposed: at first to attempt EN whenever and as early as possible, then to use indirect calorimetry if available, and to monitor delivery and response to feeding, and finally to consider the option of combining EN with PN in case of insufficient EN from day 4 onwards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The systematic screening of more than 250 molecules against Plasmodium falciparum in vitro has previously shown that interfering with phospholipid metabolism is lethal to the malaria parasite. These compounds act by impairing choline transport in infected erythrocytes, resulting in phosphatidylcholine de novo biosynthesis inhibition. A thorough study was carried out with the leader compound G25, whose in vitro IC50 is 0.6 nM. It was very specific to mature parasites (trophozoïtes) as determined in vitro with P. falciparum and in vivo with P. chabaudi -infected mice. This specificity corresponds to the most intense phase of phospholipid biosynthesis activity during the parasite cycle, thus corroborating the mechanism of action. The in vivo antimalarial activity (ED50) against P. chabaudi was 0.03 mg/kg, and a similar sensitivity was obtained with P. vinckei petteri, when the drug was intraperitoneally administered in a 4 day suppressive test. In contrast, P. berghei was revealed as less sensitive (3- to 20-fold, depending on the P. berghei-strain). This difference in activity could result either from the degree of synchronism of every strain, their invasion preference for mature or immature red blood cells or from an intrinsically lower sensitivity of the P. berghei strain to G25. Irrespective of the mode of administration, G25 had the same therapeutic index (lethal dose 50 (LD50)/ED50) but the dose to obtain antimalarial activity after oral treatment was 100-fold higher than after intraperitoneal (or subcutaneous) administration. This must be related to the low intestinal absorption of these kind of compounds. G25 succeeded to completely inhibiting parasitemia as high as 11.2% without any decrease in its therapeutic index when administered subcutaneously twice a day for at least 8 consecutive days to P. chabaudi -infected-rodent model. Transition to human preclinical investigations now requires a synthesis of molecules which would permit oral absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaryl-CoA dehydrogenase (GCDH, EC 1.3.99.7) deficiency, known as glutaric acidemia type I, is one of the more common organic acidurias. To investigate the role of this pathway in different organs we studied the tissue-specific expression pattern of rat Gcdh. The open reading frame cDNA of the rat Gcdh gene was cloned from rat brain mRNA by RT-PCR, allowing the synthesis of digoxigenin-labeled in situ hybridization (ISH) riboprobes. Gcdh mRNA expression was analyzed by ISH on cryosections of adult rat brain, kidney, liver, spleen and heart muscle, as well as on E15 and E18 rat embryos. Gcdh was found expressed in the whole rat brain, almost exclusively in neurons. Gcdh was absent from astrocytes but expressed in rare oligodendrocytes. Strong Gcdh expression was found in liver and spleen, where expression appears predominant to lymphatic nodules. In kidney, the highest Gcdh expression is found in the juxtamedullar cortex (but not in glomerula), and at lower levels in medulla. Heart muscle was negative. During embryonic development, Gcdh was found well expressed in liver, intestinal mucosa and skin, as well as at lower levels in CNS. Further studies are ongoing to provide evidence on the presence of the entire pathway in CNS in order to understand the mechanisms leading to neurotoxicity in glutaric aciduria. The high expression of Gcdh in kidney may explain why certain patients with residual enzyme activity are low excretors at the urine metabolite level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The follicle-associated epithelium (FAE) that overlies Peyer's patches (PPs) exhibits distinct features compared with the adjacent villus epithelium. Besides the presence of antigen-sampling membranous M cells and the down-regulation of digestive functions, it constitutively expresses the chemokine CCL20. The mechanisms that induce FAE differentiation and CCL20 expression are poorly understood. The aim of this work was to test whether lymphotoxin beta receptor signaling (LTbetaR), which plays a central role in PPs' organogenesis, mediates CCL20 gene expression in intestinal epithelial cells. METHODS: CCL20, lymphotoxin beta (LTbeta) and LTbetaR expression were monitored during embryonic development by in situ hybridization of mouse intestine. The human intestinal epithelial cell line T84 was used to study CCL20 expression following LTalpha(1)/beta(2) stimulation. In vivo CCL20 expression following agonistic anti-LTbetaR antibody treatment was studied by laser microdissection and quantitative RT-PCR. RESULTS: CCL20 was expressed in the FAE before birth at the time when the first hematopoietic CD4(+)CD3(-) appeared in the PP anlage. LTbetaR was expressed in the epithelium during PP organogenesis, making it a putative target for LTalpha(1)beta(2)signals. In vitro, CCL20 was induced in T84 cells upon LTbetaR signaling, either using an agonistic ligand or anti-LTbeta receptor agonistic antibody. LTalpha(1)beta(2)-induced CCL20 expression was found to be NF-kappaB dependent. LTbetaR signaling up-regulated CCL20 expression in the small intestinal epithelium in vivo. CONCLUSIONS: Our results show that LTbetaR signaling induces CCL20 expression in intestinal epithelial cells, suggesting that this pathway triggers constitutive production of CCL20 in the FAE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrastructural observations of spermatogenesis and sperm development of Saccocoelioides godoyi, an intestinal parasite of Leporinus friderici (Bloch, 1794) are described. The irregular-shaped spermatogonia form a peripheral layer, and show a prominent nucleus. Spermatocytes are larger than spermatogonia, and in the early stage present synaptonemal complex. Spermatids show nuclei smaller than the spermatocytes. Spermiogenesis is characterized by outgrowth of the zone of differentiation, presenting basal bodies, separated by an intercentriolar body. At the end of this process, the spermatozoa are released into the residual cytoplasmic mass. The spermatozoa of S. godoyi are elongate, similar to the pattern described for other Digenea, showing nuclei, mitochondria and two axonemes with the 9+1 configuration. The peripheral cortical microtubules on the dorsal and ventral faces are laterally interrupted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas interactions between the TCRalpha beta and self MHC:peptide complexes are clearly required for positive selection of mature CD4(+) and CD8(+) T cells during intrathymic development, the role of self or foreign ligands in maintaining the peripheral T cell repertoire is still controversial. In this report we have utilized keratin 14-beta2-microglobulin (K14-beta2m)-transgenic mice expressing beta2m-associated ligands exclusively on thymic cortical epithelial cells to address the possible influence of TCR:ligand interactions in peripheral CD8(+) T cell homeostasis. Our data indicate that CD8(+) T cells in peripheral lymphoid tissues are present in normal numbers in the absence of self MHC class I:peptide ligands. Surprisingly, however, steady state homeostasis of CD8(+) T cells in the intestinal epithelium is severely affected by the absence of beta2m-associated ligands. Indeed TCRalpha beta(+) IEL subsets expressing CD8alpha beta or CD8alpha alpha are both dramatically reduced in K14-beta2m mice, suggesting that the development, survival or expansion of CD8(+) IEL depends upon interaction of the TCR with MHC class I:peptide or other beta2m-associated ligands elsewhere than on thymic cortical epithelium. Collectively, our data reveal an unexpected difference in the regulation of CD8(+) T cell homeostasis by beta2m-associated ligands in the intestine as compared to peripheral lymphoid organs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whereas most T cells arise in the thymus, a distinct lineage of extrathymically derived T cells is present in the gut mucosa. The developmental origin of extrathymic T cells is poorly understood. We show here that Notch-1, a transmembrane receptor involved in T cell fate specification of bipotential T/B precursors in the thymus, is absolutely required for the development of extrathymic (as well as thymus-derived) mature T cells in the intestinal epithelium. In the absence of Notch-1, CD117(+) T cell precursors are relatively more abundant in the gut than the thymus, whereas immature B cells accumulate in the thymus but not the gut. Collectively, these data demonstrate that Notch-1 is essential for both thymic and extrathymic T cell fate specification and further suggest that bipotential T/B precursors that do not receive a Notch-1 signal adopt a B cell fate in the thymus but become developmentally arrested in the gut.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (STAT) 3 is a pleiotropic transcription factor with important functions in cytokine signaling in a variety of tissues. However, the role of STAT3 in the intestinal epithelium is not well understood. We demonstrate that development of colonic inflammation is associated with the induction of STAT3 activity in intestinal epithelial cells (IECs). Studies in genetically engineered mice showed that epithelial STAT3 activation in dextran sodium sulfate colitis is dependent on interleukin (IL)-22 rather than IL-6. IL-22 was secreted by colonic CD11c(+) cells in response to Toll-like receptor stimulation. Conditional knockout mice with an IEC-specific deletion of STAT3 activity were highly susceptible to experimental colitis, indicating that epithelial STAT3 regulates gut homeostasis. STAT3(IEC-KO) mice, upon induction of colitis, showed a striking defect of epithelial restitution. Gene chip analysis indicated that STAT3 regulates the cellular stress response, apoptosis, and pathways associated with wound healing in IECs. Consistently, both IL-22 and epithelial STAT3 were found to be important in wound-healing experiments in vivo. In summary, our data suggest that intestinal epithelial STAT3 activation regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the brain and spinal cord that is mediated by CD4+ T lymphocytes specific to myelin components. In this study we compared development of EAE in Lewis rats from two colonies, one kept in pathogen-free conditions (CEMIB colony) and the other (Botucatu colony) kept in a conventional animal facility. Female Lewis rats were immunized with 100 µl of an emulsion containing 50 µg of myelin, associated with incomplete Freund's adjuvant plus Mycobacterium butyricum. Animals were daily evaluated for clinical score and weight. CEMIB colony presented high EAE incidence with clinical scores that varied from three to four along with significant weight losses. A variable disease incidence was observed in the Botucatu colony with clinical scores not higher than one and no weight loss. Immunological and histopathological characteristics were also compared after 20 days of immunization. Significant amounts of IFN-gamma, TNF-alpha and IL-10 were induced by myelin in cultures from CEMIB animals but not from the Botucatu colony. Significantly higher levels of anti-myelin IgG1 were detected in the CEMIB colony. Clear histopathological differences were also found. Cervical spinal cord sections from CEMIB animals showed typical perivascular inflammatory foci whereas samples from the Botucatu colony showed a scanty inflammatory infiltration. Helminths were found in animals from Botucatu colony but not, as expected, in the CEMIB pathogen-free animals. As the animals maintained in a conventional animal facility developed a very discrete clinical, and histopathological EAE in comparison to the rats kept in pathogen-free conditions, we believe that environmental factors such as intestinal parasites could underlie this resistance to EAE development, supporting the applicability of the hygiene hypothesis to EAE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small intestinal immunopathology following oral infection with tissue cysts of Toxoplasma gondii has been described in C57BL/6 mice. Seven days after infection, mice develop severe small intestinal necrosis and succumb to infection. The immunopathology is mediated by local overproduction of Th1-type cytokines, a so-called "cytokine storm". The immunopathogenesis of this pathology resembles that of inflammatory bowel disease in humans, i.e., Crohn's disease. In this review, we show that the development of intestinal pathology following oral ingestion of T. gondii is not limited to C57BL/6 mice, but frequently occurs in nature. Using a Pubmed search, we identified 70 publications that report the development of gastrointestinal inflammation following infection with T. gondii in 63 animal species. Of these publications, 53 reports are on accidental ingestion of T. gondii in 49 different animal species and 17 reports are on experimental infections in 19 different animal species. Thus, oral infection with T. gondii appears to cause immunopathology in a large number of animal species in addition to mice. This manuscript reviews the common features of small intestinal immunopathology in the animal kingdom and speculates on consequences of this immunopathology for humankind.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary culture of intestinal epithelial cells from domestic cats is an efficient cellular model to study the enteric cycle of Toxoplasma gondii in a definitive host. The parasite-host cell ratio can be pointed out as a decisive factor that determines the intracellular fate of bradyzoites forms. The development of the syncytial-like forms of T. gondii was observed using the 1:20 bradyzoite-host cell ratio, resulting in similar forms described in in vivo systems. This alternative study potentially opens up the field for investigation into the molecular aspects of this interaction. This can contribute to the development of new strategies for intervention of a main route by which toxoplasmosis spreads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity and its associated disorders are a major public health concern. Although obesity has been mainly related with perturbations of the balance between food intake and energy expenditure, other factors must nevertheless be considered. Recent insight suggests that an altered composition and diversity of gut microbiota could play an important role in the development of metabolic disorders. This review discusses research aimed at understanding the role of gut microbiota in the pathogenesis of obesity and type 2 diabetes mellitus (TDM2). The establishment of gut microbiota is dependent on the type of birth. With effect from this point, gut microbiota remain quite stable, although changes take place between birth and adulthood due to external influences, such as diet, disease and environment. Understand these changes is important to predict diseases and develop therapies. A new theory suggests that gut microbiota contribute to the regulation of energy homeostasis, provoking the development of an impairment in energy homeostasis and causing metabolic diseases, such as insulin resistance or TDM2. The metabolic endotoxemia, modifications in the secretion of incretins and butyrate production might explain the influence of the microbiota in these diseases.