936 resultados para International Statistical Institute
Resumo:
We develop several results on hitting probabilities of random fields which highlight the role of the dimension of the parameter space. This yields upper and lower bounds in terms of Hausdorff measure and Bessel-Riesz capacity, respectively. We apply these results to a system of stochastic wave equations in spatial dimension k >- 1 driven by a d-dimensional spatially homogeneous additive Gaussian noise that is white in time and colored in space.
Resumo:
In a recent paper, Komaki studied the second-order asymptotic properties of predictive distributions, using the Kullback-Leibler divergence as a loss function. He showed that estimative distributions with asymptotically efficient estimators can be improved by predictive distributions that do not belong to the model. The model is assumed to be a multidimensional curved exponential family. In this paper we generalize the result assuming as a loss function any f divergence. A relationship arises between alpha connections and optimal predictive distributions. In particular, using an alpha divergence to measure the goodness of a predictive distribution, the optimal shift of the estimate distribution is related to alpha-covariant derivatives. The expression that we obtain for the asymptotic risk is also useful to study the higher-order asymptotic properties of an estimator, in the mentioned class of loss functions.
Resumo:
In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich integral.
Resumo:
This paper is devoted to prove a large-deviation principle for solutions to multidimensional stochastic Volterra equations.
Resumo:
We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.
Resumo:
We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.
Resumo:
Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83-109] prove an extension of Ito's formula for F(Xt, t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisenbaum [Potential Anal. 13 (2000) 303-328] concerning Brownian motion, we show that one can re-express this formula using integration over space and time with respect to local times in place of quadratic covariation. We also show that when the function F has a locally integrable derivative in t, we can avoid the mild continuity condition in t for the derivative of F in x.
Resumo:
We derive the chaotic expansion of the product of nth- and first-order multiple stochastic integrals with respect to certain normal martingales. This is done by application of the classical and quantum product formulae for multiple stochastic integrals. Our approach extends existing results on chaotic calculus for normal martingales and exhibits properties, relative to multiple stochastic integrals, polynomials and Wick products, that characterize the Wiener and Poisson processes.
Resumo:
O pesquisador da FGV/DAPP João Victor participou, durante o mês de Julho, do 21º SINAPE - Simpósio Nacional de Probabilidade e Estatística, em Natal, a principal reunião científica da comunidade estatística brasileira. Durante uma semana, o pesquisador da DAPP participou de palestras e minicursos e apresentou seu projeto sobre Ferramentas para Formatação e Verificação de Microdados de Pesquisas, sob orientação do atual presidente-eleito do International Statistical Institute, Pedro Luis do Nascimento Silva.