707 resultados para Innovative Collaborative Scenarios
Resumo:
Children investigated by child welfare are at significant risk for poor cognitive, emotional, social, behavioral and economic outcomes. In 2000, California formed the Child Welfare Services Group to propose changes in how child welfare services are delivered, the CWS Redesign. California State University, Long Beach’s child welfare training program developed its complement. Fundamentally, Redesign calls for partnering with families and communities to strengthen families, prevent unnecessary placements or re-unite families successfully. These changes are a paradigm shift in attitudes toward birth families and communities. In a qualitative study, interns logged their observations and subsequent impressions of CWS-Client encounters to explore how attitudes are learned. Majority of interns observed positive, collaborative encounters and perceived birth parents as motivated. Their impressions support introducing interns to birth families on the front-end of CWS training.
Resumo:
The goal of this paper is to show the results of an on-going experience on teaching project management to grade students by following a development scheme of management related competencies on an individual basis. In order to achieve that goal, the students are organized in teams that must solve a problem and manage the development of a feasible solution to satisfy the needs of a client. The innovative component advocated in this paper is the formal introduction of negotiating and virtual team management aspects, as different teams from different universities at different locations and comprising students with different backgrounds must collaborate and compete amongst them. The different learning aspects are identified and the improvement levels are reflected in a rubric that has been designed ad hoc for this experience. Finally, the effort frameworks for the student and instructor have been established according to the requirements of the Bologna paradigms. This experience is developed through a software-based support system allowing blended learning for the theoretical and individual?s work aspects, blogs, wikis, etc., as well as project management tools based on WWW that allow the monitoring of not only the expected deliverables and the achievement of the goals but also the progress made on learning as established in the defined rubric
Resumo:
This work presents an educational formal initiative aimed to monitor the acquisition and strengthening of competences by students that are being taught in project management subject. Groups of students belonging to three universities, embracing different knowledge areas such as engineering, biology, etc., were selected to run the experience. All of them had nevertheless a common and basic starting point: inexperience in project management field. In this scenario, we propose a new theoretical and practical approach oriented to reinforce problem-solving and related competences in a project management subject context. For this purpose, a Project-Based Learning (PjBL) initiative has been specifically designed and developed. The main idea is to bring a real world engineering project management case into the classroom, where students must face up to a completely new learning approach –groups in different locations, collaborative mode and unspecific solution, supported by a powerful internet platform:.project.net (http://www.Project.net). Other relevant aspects such as project climate, knowledge increasing, have also been monitored during the course. Results show and overall improvement in key competences. The obtained information will be used in two ways: to feed the students back about personal opportunities for improvement in specific competences, and to fine-tune the experience for further initiatives.
Resumo:
Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of estimating the target’s position when we use received signal strength indicator (RSSI) due to the nonlinear relationship between the measured signal and the true position of the target. Many of the existing approaches suffer either from high computational complexity (e.g., particle filters) or lack of accuracy. Further, many of the proposed solutions are centralized which make their application to a sensor network questionable. Depending on the application at hand and, from a practical perspective it could be convenient to find a balance between localization accuracy and complexity. Into this direction we approach the maximum likelihood location estimation problem by solving a suboptimal (and more tractable) problem. One of the main advantages of the proposed scheme is that it allows for a decentralized implementation using distributed processing tools (e.g., consensus and convex optimization) and therefore, it is very suitable to be implemented in real sensor networks. If further accuracy is needed an additional refinement step could be performed around the found solution. Under the assumption of independent noise among the nodes such local search can be done in a fully distributed way using a distributed version of the Gauss-Newton method based on consensus. Regardless of the underlying application or function of the sensor network it is al¬ways necessary to have a mechanism for data reporting. While some approaches use a special kind of nodes (called sink nodes) for data harvesting and forwarding to the outside world, there are however some scenarios where such an approach is impractical or even impossible to deploy. Further, such sink nodes become a bottleneck in terms of traffic flow and power consumption. To overcome these issues instead of using sink nodes for data reporting one could use collaborative beamforming techniques to forward directly the generated data to a base station or gateway to the outside world. In a dis-tributed environment like a sensor network nodes cooperate in order to form a virtual antenna array that can exploit the benefits of multi-antenna communications. In col-laborative beamforming nodes synchronize their phases in order to add constructively at the receiver. Some of the inconveniences associated with collaborative beamforming techniques is that there is no control over the radiation pattern since it is treated as a random quantity. This may cause interference to other coexisting systems and fast bat-tery depletion at the nodes. Since energy-efficiency is a major design issue we consider the development of a distributed collaborative beamforming scheme that maximizes the network lifetime while meeting some quality of service (QoS) requirement at the re¬ceiver side. Using local information about battery status and channel conditions we find distributed algorithms that converge to the optimal centralized beamformer. While in the first part we consider only battery depletion due to communications beamforming, we extend the model to account for more realistic scenarios by the introduction of an additional random energy consumption. It is shown how the new problem generalizes the original one and under which conditions it is easily solvable. By formulating the problem under the energy-efficiency perspective the network’s lifetime is significantly improved. Resumen La proliferación de las redes inalámbricas de sensores junto con la gran variedad de posi¬bles aplicaciones relacionadas, han motivado el desarrollo de herramientas y algoritmos necesarios para el procesado cooperativo en sistemas distribuidos. Una de las aplicaciones que suscitado mayor interés entre la comunidad científica es la de localization, donde el conjunto de nodos de la red intenta estimar la posición de un blanco localizado dentro de su área de cobertura. El problema de la localization es especialmente desafiante cuando se usan niveles de energía de la seal recibida (RSSI por sus siglas en inglés) como medida para la localization. El principal inconveniente reside en el hecho que el nivel de señal recibida no sigue una relación lineal con la posición del blanco. Muchas de las soluciones actuales al problema de localization usando RSSI se basan en complejos esquemas centralizados como filtros de partículas, mientas que en otras se basan en esquemas mucho más simples pero con menor precisión. Además, en muchos casos las estrategias son centralizadas lo que resulta poco prácticos para su implementación en redes de sensores. Desde un punto de vista práctico y de implementation, es conveniente, para ciertos escenarios y aplicaciones, el desarrollo de alternativas que ofrezcan un compromiso entre complejidad y precisión. En esta línea, en lugar de abordar directamente el problema de la estimación de la posición del blanco bajo el criterio de máxima verosimilitud, proponemos usar una formulación subóptima del problema más manejable analíticamente y que ofrece la ventaja de permitir en¬contrar la solución al problema de localization de una forma totalmente distribuida, convirtiéndola así en una solución atractiva dentro del contexto de redes inalámbricas de sensores. Para ello, se usan herramientas de procesado distribuido como los algorit¬mos de consenso y de optimización convexa en sistemas distribuidos. Para aplicaciones donde se requiera de un mayor grado de precisión se propone una estrategia que con¬siste en la optimización local de la función de verosimilitud entorno a la estimación inicialmente obtenida. Esta optimización se puede realizar de forma descentralizada usando una versión basada en consenso del método de Gauss-Newton siempre y cuando asumamos independencia de los ruidos de medida en los diferentes nodos. Independientemente de la aplicación subyacente de la red de sensores, es necesario tener un mecanismo que permita recopilar los datos provenientes de la red de sensores. Una forma de hacerlo es mediante el uso de uno o varios nodos especiales, llamados nodos “sumidero”, (sink en inglés) que actúen como centros recolectores de información y que estarán equipados con hardware adicional que les permita la interacción con el exterior de la red. La principal desventaja de esta estrategia es que dichos nodos se convierten en cuellos de botella en cuanto a tráfico y capacidad de cálculo. Como alter¬nativa se pueden usar técnicas cooperativas de conformación de haz (beamforming en inglés) de manera que el conjunto de la red puede verse como un único sistema virtual de múltiples antenas y, por tanto, que exploten los beneficios que ofrecen las comu¬nicaciones con múltiples antenas. Para ello, los distintos nodos de la red sincronizan sus transmisiones de manera que se produce una interferencia constructiva en el recep¬tor. No obstante, las actuales técnicas se basan en resultados promedios y asintóticos, cuando el número de nodos es muy grande. Para una configuración específica se pierde el control sobre el diagrama de radiación causando posibles interferencias sobre sis¬temas coexistentes o gastando más potencia de la requerida. La eficiencia energética es una cuestión capital en las redes inalámbricas de sensores ya que los nodos están equipados con baterías. Es por tanto muy importante preservar la batería evitando cambios innecesarios y el consecuente aumento de costes. Bajo estas consideraciones, se propone un esquema de conformación de haz que maximice el tiempo de vida útil de la red, entendiendo como tal el máximo tiempo que la red puede estar operativa garantizando unos requisitos de calidad de servicio (QoS por sus siglas en inglés) que permitan una decodificación fiable de la señal recibida en la estación base. Se proponen además algoritmos distribuidos que convergen a la solución centralizada. Inicialmente se considera que la única causa de consumo energético se debe a las comunicaciones con la estación base. Este modelo de consumo energético es modificado para tener en cuenta otras formas de consumo de energía derivadas de procesos inherentes al funcionamiento de la red como la adquisición y procesado de datos, las comunicaciones locales entre nodos, etc. Dicho consumo adicional de energía se modela como una variable aleatoria en cada nodo. Se cambia por tanto, a un escenario probabilístico que generaliza el caso determinista y se proporcionan condiciones bajo las cuales el problema se puede resolver de forma eficiente. Se demuestra que el tiempo de vida de la red mejora de forma significativa usando el criterio propuesto de eficiencia energética.
Resumo:
La educación y los entornos educativos están en constante evolución. Tanto alumnos como educadores cambian de hábitos, de maneras de aprender, de gustos, de dispositivos que manejan y de aplicaciones que usan regularmente entre otras cosas. Todos estos cambios vienen acompañados y fomentados en gran medida por la evolución paralela que experimenta la tecnología, tanto software en los programas utilizados, como hardware en los dispositivos y capacidades de éstos. La educación debe también adaptarse a estos cambios, tanto personales como tecnológicos y sacar el mayor provecho de ellos. El uso de Sistemas de Gestión del Aprendizaje está muy extendido en todos los centros educativos. Estos sistemas poseen un gran número de características y funcionalidades que permiten desde la aplicación de un modelo didáctico totalmente tradicional en el que el profesor imparte un contenido y los alumnos lo reciben a uno totalmente innovador en el que ocurren procesos totalmente diferentes. Por otro lado, el potencial que ofrecen los recursos multimedia no ha sido completamente aprovechado en la educación y supone una gran oportunidad. Esta tesis doctoral propone un conjunto de métodos y herramientas para la creación y el uso de recursos multimedia en la educación. Para ello el desarrollo de esta tesis parte de la definición de un modelo didáctico social, colaborativo y centrado en el alumno que servirá de hilo conductor y que integrará los diferentes y métodos y herramientas estudiados y desarrollados. En un primer paso se identifican varias herramientas y métodos para el aula, tales son la grabación de clases, donde se crea y posteriormente se mejora un carrito portátil de grabación que da muy buen resultado, las herramientas de grabación de screencast y la videoconferencia. Estas herramientas además se integran en una plataforma colaborativa dando lugar a una arquitectura completa y escalable que permite la realización de dichas actividades y la interconexión sencilla con el Sistema de Gestión del Aprendizaje. A continuación y ya en un entorno totalmente online se desarrolla una nueva plataforma de e-learning llamada Virtual Science Hub (ViSH) que consta de cuatro funcionalidades principales, red social, videoconferencia, repositorio educativo y herramienta de autor. En esta plataforma se aplicaron técnicas de recomendación proactiva tanto de recursos educativos como de otros usuarios similares. Por último se validó el modelo educativo completo usando algunas de las herramientas identificadas y desarrolladas en dos escenarios diferentes con gran éxito. Finalmente, esta tesis discute las conclusiones obtenidas a lo largo de la extensa investigación llevada a cabo y que ha propiciado la consecución de una buena base teórica y práctica para la creación de herramientas y métodos para la generación y el uso de recursos multimedia en la educación. ABSTRACT Education and learning environments are constantly evolving. Students and educators change the things their habits, their ways of learning, the things they like or the devices and applications that they use regularly among other things. All these changes are accompanied and fostered by the parallel evolution that technology experiences, both in the software programs used as in the hardware and capabilities of these devices. Education must also adapt to these changes, both personal and technological and get the most out of them. Learning Management Systems are widely used in all educational centers. These systems have a large number of features and functionalities. They allow from the implementation of a traditional teaching model in which the teacher gives content and students receive it to one absolutely innovative teaching model where totally different processes occur. Furthermore, the potential of multimedia resources has not been fully exploited in education and can be a great opportunity. This thesis proposes a set of methods and tools for the creation and use of multimedia in education. The development of this thesis starts with the definition of a social, collaborative and learner-centered model, that serves as a common thread and that integrates different tools and methods studied and developed. In a first step, several tools and methods for the classroom are identified, such as recording, where a portable kit is created and then improved giving very good results, screencast recording and videoconferencing. These tools also are integrated into a collaborative platform resulting in a complete, scalable architecture that enables the execution of such activities and a simple interconnection with the Learning Management System. In an fully online environment a new e-learning platform called Virtual Science Hub (ViSH) is created. It consists of four main features that combine and complement each other, social network, videoconferencing, educational repository and authoring tool. In this platform proactive recommendation of both educational resources and similar users is applied. In a last step the entire educational model using some of the tools identified and developed is successfully validated in two different scenarios. Finally, this thesis discusses the findings obtained during the extensive research carried out and has led to the achievement of a good theoretical and practical basis for the development of tools and methods for the generation and use of multimedia in education.
Resumo:
This paper reports the results of the assessment of a range of measures implemented in bus systems in five European cities to improve the use of public transport by increasing its attractiveness and enhancing its image in urban areas. This research was conducted as part of the EBSF project (European Bus System of the Future) from 2008 to 2012. New buses (prototypes), new vehicle and infrastructure technologies, and operational best practices were introduced, all of which were combined in a system approach. The measures were assessed using multicriteria analysis to simultaneously evaluate a certain number of criteria that need to be aggregated. Each criterion is measured by one or more key performance indicators (KPI) calculated in two scenarios (reference scenario, with no measure implemented; and project scenario, with the implementation of some measures), in order to evaluate the difference in the KPI performance between the reference and project scenario. The results indicate that the measures produce a greater benefit in issues related to bus system productivity and customer satisfaction, with the greatest impact on aspects of perceptions of comfort, cleanliness and quality of service, information to passengers and environmental issues. The study also reveals that the implementation of several measures has greater social utility than very specific and isolated measures.
Resumo:
The main scope of this research is to identify and evaluate solutions to redesign the parcels delivery logistic process to achieve higher level of quality, lower operational costs, energy consumptions and air pollution. The study is starting from the analysis of the delivery process managed by a leader company operating in Rome. Main delivery flows, personnel and fleet management costs, quality performances and environmental impacts are investigated. The results of this analysis are benchmarked with other European situations. On the basis of the feedback of this analysis, a set of operational measures, potentially able tackle the objectives, are identified and assessed by means of a simulative approach. The assessment is based on environmental and economic indicators allowing the comparison between new and reference scenarios from the viewpoints of the key players: operator, customer and Society. Moreover, the operational measures are combined into alternative packages by looking for the sets capable to maximize the benefits for the key players. The methodology, tested on Rome case study, is general and flexible enough to be extended to parcels delivery problem in different urban contexts, as well as to similar urban distribution problems (e.g. press, food, security, school)
Resumo:
In the current context of economic crisis, there is an increasing need for new approaches for solving social problems without relying upon public resources. With this regard, social entrepreneurship has been arising as an important solution to develop social innovations and address social needs. Social entrepreneurs found new ventures that aim at solving social problems. The main purpose of this research is to identify the general profile of the social entrepreneurs and the main features of social companies, such as geographic scope, profit or non-profit approach, collaborative networks, decision making structure, and typologies of customers that benefit from their social actions.
Resumo:
Achieving more sustainable land and water use depends on high-quality information and its improved use. In other words, better linkages are needed between science and management. Since many stakeholders with different relationships to the natural resources are inevitably involved, we suggest that collaborative learning environments and improved information management are prerequisites for integrating science and management. Case studies that deal with resource management issues are presented that illustrate the creation of collaborative learning environments through systems analyses with communities, and an integration of scientific and experiential knowledge of components of the system. This new knowledge needs to be captured and made accessible through innovative information management systems designed collaboratively with users, in forms which fit the users' 'mental models' of how their systems work. A model for linking science and resource management more effectively is suggested. This model entails systems thinking in a collaborative learning environment, and processes to help convergence of views and value systems, and make scientists and different kinds of managers aware of their interdependence. Adaptive management provides a mechanism for applying and refining scientists' and managers' knowledge. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
There have been many models developed by scientists to assist decision-makers in making socio-economic and environmental decisions. It is now recognised that there is a shift in the dominant paradigm to making decisions with stakeholders, rather than making decisions for stakeholders. Our paper investigates two case studies where group model building has been undertaken for maintaining biodiversity in Australia. The first case study focuses on preservation and management of green spaces and biodiversity in metropolitan Melbourne under the umbrella of the Melbourne 2030 planning strategy. A geographical information system is used to collate a number of spatial datasets encompassing a range of cultural and natural assets data layers including: existing open spaces, waterways, threatened fauna and flora, ecological vegetation covers, registered cultural heritage sites, and existing land parcel zoning. Group model building is incorporated into the study through eliciting weightings and ratings of importance for each datasets from urban planners to formulate different urban green system scenarios. The second case study focuses on modelling ecoregions from spatial datasets for the state of Queensland. The modelling combines collaborative expert knowledge and a vast amount of environmental data to build biogeographical classifications of regions. An information elicitation process is used to capture expert knowledge of ecoregions as geographical descriptions, and to transform this into prior probability distributions that characterise regions in terms of environmental variables. This prior information is combined with measured data on the environmental variables within a Bayesian modelling technique to produce the final classified regions. We describe how linked views between descriptive information, mapping and statistical plots are used to decide upon representative regions that satisfy a number of criteria for biodiversity and conservation. This paper discusses the advantages and problems encountered when undertaking group model building. Future research will extend the group model building approach to include interested individuals and community groups.
Resumo:
The evaluation of industrial policy interventions has attracted increasing policy and academic attention in recent years. Despite the widespread consensus regarding the need for evaluation, the issue of how to evaluate, and the associated methodological considerations, continue to be issues of considerable debate. The authors develop an approach to estimate the net additionality of financial assistance from Enterprise Ireland to indigenously owned firms in Ireland for the period 2000 to 2002. With a sample of Enterprise Ireland assisted firms, an innovative, self-assessment, in-depth, face-to-face, interview methodology was adopted. The authors also explore a way of incorporating the indirect benefits of assistance into derived deadweight estimate issue which is seldom discussed in the context of deadweight estimates. They conclude by reflecting on the key methodological lessons learned from the evaluation process, and highlight some pertinent evaluation issues which should form the focus of much future discussion in this field of research.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
Planning is an essential process in teams of multiple agents pursuing a common goal. When the effects of actions undertaken by agents are uncertain, evaluating the potential risk of such actions alongside their utility might lead to more rational decisions upon planning. This challenge has been recently tackled for single agent settings, yet domains with multiple agents that present diverse viewpoints towards risk still necessitate comprehensive decision making mechanisms that balance the utility and risk of actions. In this work, we propose a novel collaborative multi-agent planning framework that integrates (i) a team-level online planner under uncertainty that extends the classical UCT approximate algorithm, and (ii) a preference modeling and multicriteria group decision making approach that allows agents to find accepted and rational solutions for planning problems, predicated on the attitude each agent adopts towards risk. When utilised in risk-pervaded scenarios, the proposed framework can reduce the cost of reaching the common goal sought and increase effectiveness, before making collective decisions by appropriately balancing risk and utility of actions.
Resumo:
Future pervasive environments will take into consideration not only individual user’s interest, but also social relationships. In this way, pervasive communities can lead the user to participate beyond traditional pervasive spaces, enabling the cooperation among groups and taking into account not only individual interests, but also the collective and social context. Social applications in CSCW (Computer Supported Cooperative Work) field represent new challenges and possibilities in terms of use of social context information for adaptability in pervasive environments. In particular, the research describes the approach in the design and development of a context.aware framework for collaborative applications (CAFCA), utilizing user’s context social information for proactive adaptations in pervasive environments. In order to validate the proposed framework an evaluation was conducted with a group of users based on enterprise scenario. The analysis enabled to verify the impact of the framework in terms of functionality and efficiency in real-world conditions. The main contribution of this thesis was to provide a context-aware framework to support collaborative applications in pervasive environments. The research focused on providing an innovative socio-technical approach to exploit collaboration in pervasive communities. Finally, the main results reside in social matching capabilities for session formation, communication and coordinations of groupware for collaborative activities.