881 resultados para Ingeniería de reactores
Resumo:
En este trabajo se diseñó un condensador de vapor sobrecalentado (320°C@2bar) de 78KW que formará parte de un arreglo experimental en el cual se probarán maniobras de arranque del reactor CAREM. Con este objetivo se hizo un estudio de las distintas tecnologías de condensadores existentes en el mercado y se seleccionó el más apropiado para este proyecto. Se encontró que el formato carcasa-tubo de orientación horizontal era el más apropiado. Se efectuó un dimensionamiento termohidráulico del mismo y se realizó posteriormente un diseño mecánico para satisfacer los requerimientos siguiendo las normas TEMA y ASME. Se efectuó el armado de un circuito termohidráulico, empleando un intercambiador carcasa y tubo de la CNEA. Obteniendo experiencia en dicha tarea. Una vez finalizado el proceso de análisis y diseño del condensador, se realizaron los planos de ingeniería básica del mismo empleando un programa de diseño 3D.
Resumo:
Tesis (Maestría en Ciencias con esp. en Ingeniería ambiental)U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias con Especialidad en Ingeniería Ambiental) U.A.N.L.
Resumo:
Tesis (Doctor en Ingeniería de Materiales) UANL, 1995.
Resumo:
La simulación de la física del núcleo de los reactores nucleares por su complejidad requiere del uso de computadores y del software adecuado, y su evolución es ir hacía métodos y modelos de los llamados best-estimate, con el objeto de aumentar la disponibilidad de la central manteniendo los márgenes de seguridad. Para ello el Departamento de Ingeniería Nuclear (UPM), ha desarrollado el Sistema SEANAP en uso en varias centrales nucleares españolas, que realiza la simulación en 3D y con detalle de barrita combustible del quemado nominal y real del núcleo del reactor, hace el seguimiento en línea de la operación, y ayuda a la planificación óptima de las maniobras operacionales
Resumo:
A finales de 2009, Jóvenes Nucleares (JJNN) y la Universidad Politécnica de Madrid (UPM) comenzaron a planificar un nuevo y original seminario que tratase de la seguridad nuclear centrada en los reactores avanzados (Generación III, III+ y IV). El objetivo era hacer una descripción general de la seguridad en los nuevos reactores en comparación con los reactores construidos de la generación II desde un punto de vista técnico pero simple y sin la necesidad de un conocimiento muy profundo en ingeniería nuclear, para intentar que fuera interesante para el mayor número de gente posible. Después de un gran esfuerzo de JJNN con la ayuda del UPM, el seminario tuvo lugar en abril de 2010 en la ETS de Ingenieros Industriales (ETSII). Las lecciones fueron conducidas por jóvenes profesionales, expertos en la materia, que pertenecen a Jóvenes Nucleares y a compañías e instituciones relacionadas con la energía nuclear.
Resumo:
La seguridad en el ámbito nuclear juega un papel muy importante debido a las graves consecuencias que pueden tener los posibles accidentes, cuyos efectos se pueden extender por extensos espacios y prolongarse mucho en el tiempo. Es por eso que desde el inicio del desarrollo de la tecnología nuclear siempre se ha vigilado por mantener las instalaciones nucleares en un nivel de riesgo aceptable. En esta tesis se pretende poner de manifiesto algunas carencias del análisis de riesgo clásico que se resumen en una forma de distinguir y separar transitorios de daño y transitorios seguros pertenecientes a una misma secuencia, definiendo el llamado dominio de daño y evaluando la probabilidad de que algún transitorio perteneciente a la secuencia sea de daño, es decir, que esté contenido dentro de la región del dominio de daño, aportando la llamada probabilidad de superación para obtener la frecuencia de superación de estados finales no deseados. En la tesis se realiza en primer lugar un breve resumen de algunos reactores de alta temperatura refrigerados con gas, de los que se ha elegido al reactor de prueba de alta temperatura (HTTR) como ejemplo para mostrar la metodología. Aparte de ver el diseño de los diferentes reactores y su aportación a la investigación y desarrollo de nuevos modelos, se estudiaron algunos incidentes y se tomaron datos de algunos de ellos para ajustar las probabilidades de los sucesos a emplear en los árboles de fallos. Seguidamente se realiza un análisis simple de una secuencia, según la metodología clásica de análisis probabilista del riesgo, usando solo arboles de fallos y de sucesos, evaluando la frecuencia de daño de dicha secuencia. En el núcleo de la Tesis se describe la metodología y la aportación que se propone para obtener la cuantificación de tan solo los transitorios de daño y su aportación al estado final. Una aportación significativa es el modelado del HTTR, plasmado en el programa de simulación HTTR5+, necesario para poder aplicar la metodología, con el que se ha llevado a cabo la simulación de un transitorio de prueba, a fin de realizar la comparación con el obtenido por el fabricante (JAERI), buscando el dominio de daño y su cuantificación. Para este fin, se desarrolló un módulo que gestiona las diferentes simulaciones para delinear el dominio de daño, el cual se integró al simulador HTTR5+ para crear el programa DD-HTTR5+. Los resultados de la frecuencia de superación de la variable de daño se han comparado con los obtenidos por el método tradicional, para finalmente extraer las conclusiones de la Tesis. Uno de los resultados más significativos es que para la secuencia analizada un 40% de los transitorios que pertenecen a la secuencia son de daño y el otro 60% son transitorios seguros. Al emplear el método clásico se estaba realizando una sobreestimación de la probabilidad y frecuencia de daño. La Tesis también contiene en anexos una descripción muy detallada del HTTR, con respecto a su diseño, modos de operación, sistemas y componentes, etc. También se detallan las propiedades termofísicas del HTTR, así como las tasas de fallos y los árboles de fallos utilizados. Toda esta información fue de gran ayuda para realizar el modelo y programa de simulación HTTR5+.
Resumo:
Es importante disponer de una herramienta con la cual diseñar dispositivos de uso industrial y comercial que trabajen con metales líquidos (fuentes de neutrones de alta intensidad, núcleos de sistemas de transmutación nuclear, reactores de fisión de nueva generación, instalaciones de irradiación de materiales o reactores de fusión nuclear). Los códigos CFD (Computational Fluid Dynamics) son una de esas herramientas, y la manera de llevar a cabo su validación es la simulación de experimentos existentes. La turbulencia y la presencia de dos o más fases, son los dos principales problemas a los que tiene que hacer frente un código CFD. La mayoría de los modelos de turbulencia presentes en los códigos CFD se basan en considerar la proporcionalidad directa entre el transporte de cantidad de movimiento turbulento y el transporte turbulento de calor. Precisamente, el coeficiente de difusión del calor turbulento, se asume que sea proporcional a la viscosidad turbulenta a través de una constante empírica, llamada número de Prandtl turbulento. El valor de este número, en los códigos comerciales está entre 0,9 y 0,85 dependiendo del modelo de turbulencia, lo cual significa que en los códigos se asume que el transporte turbulento tanto de cantidad de movimiento como de calor, son prácticamente equivalentes. Esta asunción no es cierta en los flujos de metales líquidos, donde se demuestra que la transmisión de calor por turbulencia es pequeña frente a la transmisión de calor molecular. La solución pasa por aumentar el número de Prandtl turbulento, o abandonar la analogía de Reynolds, en el tratamiento de la turbulencia. Por otro lado, en los metales líquidos la capa límite térmica es más ancha que la de velocidad, y las funciones de pared incluidas en los códigos no satisfacen adecuadamente los flujos turbulentos de los fluidos con bajo número de Prantdl (los metales líquidos). Sí serían adecuados, si el mallado es tal, que la celda más cercana a la pared, está dentro de la subcapa laminar, en la cual la propiedad dominante es la conductividad molecular. En la simulación de flujo multifase los códigos se encuentran con una serie de dificultades, que en el caso de que las densidades de los fluidos que intervienen sean muy diferentes entre sí (como ocurre con los metales líquidos y los gases), serán aún mayores. La modelización de la interfase gas metal líquido, así como el encontrar una correlación válida para los coeficientes de resistencia y sustentación para el movimiento de las burbujas en el seno del metal líquido, son dos de los principales retos en la simulación de este tipo de flujos. Las dificultades no se limitan sólo a la simulación mediante CFD, las medidas experimentales de velocidad de las burbujas y del metal líquido también son complicadas. Hay parámetros que no se pueden definir bien: la trayectoria y la forma de las burbujas entre ellos. En el campo de aplicación industrial de los metales líquidos, los altos valores de los coeficientes de expansión volumétrica y de conductividad térmica hacen que estos fluidos sean muy atractivos en la refrigeración por convección libre en dispositivos de alta densidad de potencia. Tomando como base uno de los diseños de ADS (Accelerator Driven System), y teniendo en cuenta la dificultad que conlleva el uso de múltiples modelos físicos, los cálculos realizados muestran cómo, en caso de fallo eléctrico, la operación de la instalación puede continuar de forma segura. Para la validación de los códigos CFD en su uso como herramienta de diseño, uno de los fenómenos donde cuantitativamente más dificultades encuentran los códigos es en los que aparecen en la modelización de las superficies libres. Un buen ajuste de los modelos multifase y de turbulencia es imprescindible en este tipo de simulaciones. Efectivamente, en la instalación de irradiación de materiales IFMIF, la formación de ondas en la superficie libre del flujo de Litio, es un fenómeno que hay que tratar de evitar, y además se requiere predecir las temperaturas, para ver si hay peligro de ebullición del metal líquido. La simulación llevada a cabo se enfoca al análisis termohidráulico. Variando la velocidad de inyección de Litio desde 10 hasta 20 m/s, se comprueba que las temperaturas máximas quedan alejadas del punto de ebullición del Litio, debido al aumento de presión producido por la fuerza centrífuga. Una de las cuestiones más críticas que se presentan en las fuentes de neutrones sería la refrigeración de la ventana metálica sobre la que incide el haz de protones. La simulación de experimentos como MEGAPIE y TS-1, permite la “visualización” de recirculación en el flujo, de los puntos de estancamiento, de los puntos calientes, etc, y da una fotografía de las zonas críticas del diseño.
Resumo:
La presente tesis se centra en el estudio de los fenómenos de transporte de los isótopos de hidrógeno, y más concretamente del tritio, en materiales de interés para los reactores de fusión nuclear. Los futuros reactores de fusión nuclear necesitarán una Planta de Tritio, con una envoltura regeneradora (breeding blanket) y unos sistemas auxiliares claves para su diseño. Por lo tanto su desarrollo y cualificación son cruciales para demostrar que los reactores de fusión son una opción viable como futura fuente de energía. Se han resaltado los diferentes retos de la difusión y retención de estas especies ligeras para cada sistema de la Planta de Tritio, y se han identificado las necesidades experimentales y paramétricas para abordar las simulaciones de difusión, como factores de transporte como la difusividad, absorción/desorción, solubilidad y atrapamiento. Se han estudiado los fenómenos de transporte y parámetros del T en el metal líquido LiPb, componente del breeding blanket tanto para una planta de fusión magnética como inercial. Para ello se han utilizado dos experimentos con características diversas, uno de ellos se ha llevado a cabo en un reactor de alto flujo, y por lo tanto, en condiciones de irradiación, y el otro sin irradiación. Los métodos de simulación numérica aplicados se han adaptado a los experimentos para las mediciones y para estudiar el régimen de transporte. En el estudio de estos experimentos se ha obtenido un valor para algunos de los parámetros claves en el transporte y gestión del tritio en el reactor. Finalmente se realiza un cálculo de la acumulación y difusión de tritio en una primera pared de tungsteno para un reactor de fusión inercial. En concreto para el proyecto de fusión por láser europeo, HiPER (para sus fases 4a y 4b). Se ha estudiado: la implantación de los isótopos de H y He en la pared de W tras una reacción de fusión por iluminación directa con un láser de 48MJ; el efecto en el transporte de T de los picos de temperatura en el W debido a la frecuencia de los eventos de fusión; el régimen de transporte en la primera pared. Se han identificado la naturaleza de las trampas más importantes para el T y se ha propuesto un modelo avanzado para la difusión con trampas. ABSTRACT The present thesis focuses into study the transport phenomenons of hydrogen isotopes, more specifically tritium, in materials of interest for nuclear fusion reactors. The future nuclear reactors will be provided of a Tritium Plant, with its breeding blanket and its auxiliary systems, all of them essential components for the plant. Therefore a reliable development and coalification are key issues to prove the viability of the nuclear fusion reactors as an energy source. The currently challenges for the diffusion and accumulation of these light species for each system of the TP has been studied. Experimental and theoretical needs have been identified and analyzed, specially from the viewpoint of the parameters. To achieve reliable simulations of tritium transport, parameters as diffusivity, absorption/desorption, solubility and trapping must be reliables. Transport phenomenon and parameters of T in liquid metal have been studied. Lead lithium is a key component of the breeding blanket, either in magnetic or inertial fusion confinement. Having this aim in mind, two experiments with different characteristics have been used; one of them has been realized in a high flux reactor, and hence, under irradiation conditions. The other one has been realized without radiation. The mathematical methods for the simulation have been adapted to the experiments, for the measures and also to study the transport behavior. A value for some key parameters for tritium management has been obtained in these studies. Finally, tritium accumulation and diffusion in a W first wall of an inertial nuclear fusion reactor has been assessed. A diffusion model of the implanted H, D, T and He species for the two initial phases of the proposed European laser fusion Project HiPER (namely, phase 4a and phase 4b) has been implemented using Tritium Migration Analysis Program, TMAP7. The effect of the prompt and working temperatures and the operational pulsing modes on the diffusion are studied. The nature of tritium traps in W and their performance has been analyzed and discussed.
Resumo:
En la presente Tesis se realizó un análisis numérico, usando el código comercial Ansys-Fluent, de la refrigeración de una bola de combustible de un reactor de lecho de bolas (PBR, por sus siglas en inglés), ante un escenario de emergencia en el cual el núcleo sea desensamblado y las bolas se dejen caer en una piscina de agua, donde el mecanismo de transferencia de calor inicialmente sería la ebullición en película, implicando la convección y la radiación al fluido. Previamente se realizaron pruebas de validación, comparando los resultados numéricos con datos experimentales disponibles en la literatura para tres geometrías diferentes, lo cual permitió seleccionar los esquemas y modelos numéricos con mejor precisión y menor costo computacional. Una vez identificada la metodología numérica, todas las pruebas de validación fueron ampliamente satisfactorias, encontrándose muy buena concordancia en el flujo de calor promedio con los datos experimentales. Durante estas pruebas de validación se lograron caracterizar numéricamente algunos parámetros importantes en la ebullición en película con los cuales existen ciertos niveles de incertidumbre, como son el factor de acoplamiento entre convección y radiación, y el factor de corrección del calor latente de vaporización. El análisis térmico de la refrigeración de la bola del reactor por ebullición en película mostró que la misma se enfría, a pesar del calor de decaimiento, con una temperatura superficial de la bola que desciende de forma oscilatoria, debido al comportamiento inestable de la película de vapor. Sin embargo, la temperatura de esta superficie tiene una buena uniformidad, notándose que las áreas mejor y peor refrigeradas están localizadas en la parte superior de la bola. Se observó la formación de múltiples domos de vapor en diferentes posiciones circunferenciales, lo cual causa que el área más caliente de la superficie se localice donde se forman los domos más grandes. La separación entre los domos de vapor fue consistente con la teoría hidrodinámica, con la adición de que la separación entre domos se reduce a medida que evolucionan y crecen, debido a la curvatura de la superficie. ABSTRACT A numerical cooling analysis of a PBR fuel pebble, after an emergency scenario in which the nucleus disassembly is made and the pebbles are dropped into a water pool, transmitting heat by film boiling, involving convection and radiation to the fluid, is carried out in this Thesis. First, were performed validation tests comparing the numerical results with experimental works available for three different geometries, which allowed the selection of numerical models and schemes with better precision and lower computational cost. Once identified the numerical methodology, all validation tests were widely satisfactory, finding very good agreement with experimental works in average heat flux. During these validation tests were achieved numerically characterize some important parameters in film boiling with which there are certain levels of uncertainty, such as the coupling factor between convection and radiation, and the correction factor of the latent heat of vaporization. The thermal analysis of pebble cooling by film boiling shows that despite its decay heat, cooling occurs, with pebble surface temperature descending from an oscillatory manner, due to the instability of the vapor film. However, the temperature of this surface has a good uniformity, noting that the best and worst refrigerated area is located at the top of the pebble. The formation of multiple vapor domes at different circumferential positions is observed, which cause that the hottest area of the surface was located where biggest vapor domes were formed. The separation between vapor domes was consistent with the hydrodynamic theory, with the addition that the separation is reduced as the vapor dome evolves and grows, due to the surface curvature.
Resumo:
La fusión nuclear es, hoy en día, una alternativa energética a la que la comunidad internacional dedica mucho esfuerzo. El objetivo es el de generar entre diez y cincuenta veces más energía que la que consume mediante reacciones de fusión que se producirán en una mezcla de deuterio (D) y tritio (T) en forma de plasma a doscientos millones de grados centígrados. En los futuros reactores nucleares de fusión será necesario producir el tritio utilizado como combustible en el propio reactor termonuclear. Este hecho supone dar un paso más que las actuales máquinas experimentales dedicadas fundamentalmente al estudio de la física del plasma. Así pues, el tritio, en un reactor de fusión, se produce en sus envolturas regeneradoras cuya misión fundamental es la de blindaje neutrónico, producir y recuperar tritio (fuel para la reacción DT del plasma) y por último convertir la energía de los neutrones en calor. Existen diferentes conceptos de envolturas que pueden ser sólidas o líquidas. Las primeras se basan en cerámicas de litio (Li2O, Li4SiO4, Li2TiO3, Li2ZrO3) y multiplicadores neutrónicos de Be, necesarios para conseguir la cantidad adecuada de tritio. Los segundos se basan en el uso de metales líquidos o sales fundidas (Li, LiPb, FLIBE, FLINABE) con multiplicadores neutrónicos de Be o el propio Pb en el caso de LiPb. Los materiales estructurales pasan por aceros ferrítico-martensíticos de baja activación, aleaciones de vanadio o incluso SiCf/SiC. Cada uno de los diferentes conceptos de envoltura tendrá una problemática asociada que se estudiará en el reactor experimental ITER (del inglés, “International Thermonuclear Experimental Reactor”). Sin embargo, ITER no puede responder las cuestiones asociadas al daño de materiales y el efecto de la radiación neutrónica en las diferentes funciones de las envolturas regeneradoras. Como referencia, la primera pared de un reactor de fusión de 4000MW recibiría 30 dpa/año (valores para Fe-56) mientras que en ITER se conseguirían <10 dpa en toda su vida útil. Esta tesis se encuadra en el acuerdo bilateral entre Europa y Japón denominado “Broader Approach Agreement “(BA) (2007-2017) en el cual España juega un papel destacable. Estos proyectos, complementarios con ITER, son el acelerador para pruebas de materiales IFMIF (del inglés, “International Fusion Materials Irradiation Facility”) y el dispositivo de fusión JT-60SA. Así, los efectos de la irradiación de materiales en materiales candidatos para reactores de fusión se estudiarán en IFMIF. El objetivo de esta tesis es el diseño de un módulo de IFMIF para irradiación de envolturas regeneradoras basadas en metales líquidos para reactores de fusión. El módulo se llamará LBVM (del inglés, “Liquid Breeder Validation Module”). La propuesta surge de la necesidad de irradiar materiales funcionales para envolturas regeneradoras líquidas para reactores de fusión debido a que el diseño conceptual de IFMIF no contaba con esta utilidad. Con objeto de analizar la viabilidad de la presente propuesta, se han realizado cálculos neutrónicos para evaluar la idoneidad de llevar a cabo experimentos relacionados con envolturas líquidas en IFMIF. Así, se han considerado diferentes candidatos a materiales funcionales de envolturas regeneradoras: Fe (base de los materiales estructurales), SiC (material candidato para los FCI´s (del inglés, “Flow Channel Inserts”) en una envoltura regeneradora líquida, SiO2 (candidato para recubrimientos antipermeación), CaO (candidato para recubrimientos aislantes), Al2O3 (candidato para recubrimientos antipermeación y aislantes) y AlN (material candidato para recubrimientos aislantes). En cada uno de estos materiales se han calculado los parámetros de irradiación más significativos (dpa, H/dpa y He/dpa) en diferentes posiciones de IFMIF. Estos valores se han comparado con los esperados en la primera pared y en la zona regeneradora de tritio de un reactor de fusión. Para ello se ha elegido un reactor tipo HCLL (del inglés, “Helium Cooled Lithium Lead”) por tratarse de uno de los más prometedores. Además, los valores también se han comparado con los que se obtendrían en un reactor rápido de fisión puesto que la mayoría de las irradiaciones actuales se hacen en reactores de este tipo. Como conclusión al análisis de viabilidad, se puede decir que los materiales funcionales para mantos regeneradores líquidos podrían probarse en la zona de medio flujo de IFMIF donde se obtendrían ratios de H/dpa y He/dpa muy parecidos a los esperados en las zonas más irradiadas de un reactor de fusión. Además, con el objetivo de ajustar todavía más los valores, se propone el uso de un moderador de W (a considerar en algunas campañas de irradiación solamente debido a que su uso hace que los valores de dpa totales disminuyan). Los valores obtenidos para un reactor de fisión refuerzan la idea de la necesidad del LBVM, ya que los valores obtenidos de H/dpa y He/dpa son muy inferiores a los esperados en fusión y, por lo tanto, no representativos. Una vez demostrada la idoneidad de IFMIF para irradiar envolturas regeneradoras líquidas, y del estudio de la problemática asociada a las envolturas líquidas, también incluida en esta tesis, se proponen tres tipos de experimentos diferentes como base de diseño del LBVM. Éstos se orientan en las necesidades de un reactor tipo HCLL aunque a lo largo de la tesis se discute la aplicabilidad para otros reactores e incluso se proponen experimentos adicionales. Así, la capacidad experimental del módulo estaría centrada en el estudio del comportamiento de litio plomo, permeación de tritio, corrosión y compatibilidad de materiales. Para cada uno de los experimentos se propone un esquema experimental, se definen las condiciones necesarias en el módulo y la instrumentación requerida para controlar y diagnosticar las cápsulas experimentales. Para llevar a cabo los experimentos propuestos se propone el LBVM, ubicado en la zona de medio flujo de IFMIF, en su celda caliente, y con capacidad para 16 cápsulas experimentales. Cada cápsula (24-22 mm de diámetro y 80 mm de altura) contendrá la aleación eutéctica LiPb (hasta 50 mm de la altura de la cápsula) en contacto con diferentes muestras de materiales. Ésta irá soportada en el interior de tubos de acero por los que circulará un gas de purga (He), necesario para arrastrar el tritio generado en el eutéctico y permeado a través de las paredes de las cápsulas (continuamente, durante irradiación). Estos tubos, a su vez, se instalarán en una carcasa también de acero que proporcionará soporte y refrigeración tanto a los tubos como a sus cápsulas experimentales interiores. El módulo, en su conjunto, permitirá la extracción de las señales experimentales y el gas de purga. Así, a través de la estación de medida de tritio y el sistema de control, se obtendrán los datos experimentales para su análisis y extracción de conclusiones experimentales. Además del análisis de datos experimentales, algunas de estas señales tendrán una función de seguridad y por tanto jugarán un papel primordial en la operación del módulo. Para el correcto funcionamiento de las cápsulas y poder controlar su temperatura, cada cápsula se equipará con un calentador eléctrico y por tanto el módulo requerirá también ser conectado a la alimentación eléctrica. El diseño del módulo y su lógica de operación se describe en detalle en esta tesis. La justificación técnica de cada una de las partes que componen el módulo se ha realizado con soporte de cálculos de transporte de tritio, termohidráulicos y mecánicos. Una de las principales conclusiones de los cálculos de transporte de tritio es que es perfectamente viable medir el tritio permeado en las cápsulas mediante cámaras de ionización y contadores proporcionales comerciales, con sensibilidades en el orden de 10-9 Bq/m3. Los resultados son aplicables a todos los experimentos, incluso si son cápsulas a bajas temperaturas o si llevan recubrimientos antipermeación. Desde un punto de vista de seguridad, el conocimiento de la cantidad de tritio que está siendo transportada con el gas de purga puede ser usado para detectar de ciertos problemas que puedan estar sucediendo en el módulo como por ejemplo, la rotura de una cápsula. Además, es necesario conocer el balance de tritio de la instalación. Las pérdidas esperadas el refrigerante y la celda caliente de IFMIF se pueden considerar despreciables para condiciones normales de funcionamiento. Los cálculos termohidráulicos se han realizado con el objetivo de optimizar el diseño de las cápsulas experimentales y el LBVM de manera que se pueda cumplir el principal requisito del módulo que es llevar a cabo los experimentos a temperaturas comprendidas entre 300-550ºC. Para ello, se ha dimensionado la refrigeración necesaria del módulo y evaluado la geometría de las cápsulas, tubos experimentales y la zona experimental del contenedor. Como consecuencia de los análisis realizados, se han elegido cápsulas y tubos cilíndricos instalados en compartimentos cilíndricos debido a su buen comportamiento mecánico (las tensiones debidas a la presión de los fluidos se ven reducidas significativamente con una geometría cilíndrica en lugar de prismática) y térmico (uniformidad de temperatura en las paredes de los tubos y cápsulas). Se han obtenido campos de presión, temperatura y velocidad en diferentes zonas críticas del módulo concluyendo que la presente propuesta es factible. Cabe destacar que el uso de códigos fluidodinámicos (e.g. ANSYS-CFX, utilizado en esta tesis) para el diseño de cápsulas experimentales de IFMIF no es directo. La razón de ello es que los modelos de turbulencia tienden a subestimar la temperatura de pared en mini canales de helio sometidos a altos flujos de calor debido al cambio de las propiedades del fluido cerca de la pared. Los diferentes modelos de turbulencia presentes en dicho código han tenido que ser estudiados con detalle y validados con resultados experimentales. El modelo SST (del inglés, “Shear Stress Transport Model”) para turbulencia en transición ha sido identificado como adecuado para simular el comportamiento del helio de refrigeración y la temperatura en las paredes de las cápsulas experimentales. Con la geometría propuesta y los valores principales de refrigeración y purga definidos, se ha analizado el comportamiento mecánico de cada uno de los tubos experimentales que contendrá el módulo. Los resultados de tensiones obtenidos, han sido comparados con los valores máximos recomendados en códigos de diseño estructural como el SDC-IC (del inglés, “Structural Design Criteria for ITER Components”) para así evaluar el grado de protección contra el colapso plástico. La conclusión del estudio muestra que la propuesta es mecánicamente robusta. El LBVM implica el uso de metales líquidos y la generación de tritio además del riesgo asociado a la activación neutrónica. Por ello, se han estudiado los riesgos asociados al uso de metales líquidos y el tritio. Además, se ha incluido una evaluación preliminar de los riesgos radiológicos asociados a la activación de materiales y el calor residual en el módulo después de la irradiación así como un escenario de pérdida de refrigerante. Los riesgos asociados al módulo de naturaleza convencional están asociados al manejo de metales líquidos cuyas reacciones con aire o agua se asocian con emisión de aerosoles y probabilidad de fuego. De entre los riesgos nucleares destacan la generación de gases radiactivos como el tritio u otros radioisótopos volátiles como el Po-210. No se espera que el módulo suponga un impacto medioambiental asociado a posibles escapes. Sin embargo, es necesario un manejo adecuado tanto de las cápsulas experimentales como del módulo contenedor así como de las líneas de purga durante operación. Después de un día de después de la parada, tras un año de irradiación, tendremos una dosis de contacto de 7000 Sv/h en la zona experimental del contenedor, 2300 Sv/h en la cápsula y 25 Sv/h en el LiPb. El uso por lo tanto de manipulación remota está previsto para el manejo del módulo irradiado. Por último, en esta tesis se ha estudiado también las posibilidades existentes para la fabricación del módulo. De entre las técnicas propuestas, destacan la electroerosión, soldaduras por haz de electrones o por soldadura láser. Las bases para el diseño final del LBVM han sido pues establecidas en el marco de este trabajo y han sido incluidas en el diseño intermedio de IFMIF, que será desarrollado en el futuro, como parte del diseño final de la instalación IFMIF. ABSTRACT Nuclear fusion is, today, an alternative energy source to which the international community devotes a great effort. The goal is to generate 10 to 50 times more energy than the input power by means of fusion reactions that occur in deuterium (D) and tritium (T) plasma at two hundred million degrees Celsius. In the future commercial reactors it will be necessary to breed the tritium used as fuel in situ, by the reactor itself. This constitutes a step further from current experimental machines dedicated mainly to the study of the plasma physics. Therefore, tritium, in fusion reactors, will be produced in the so-called breeder blankets whose primary mission is to provide neutron shielding, produce and recover tritium and convert the neutron energy into heat. There are different concepts of breeding blankets that can be separated into two main categories: solids or liquids. The former are based on ceramics containing lithium as Li2O , Li4SiO4 , Li2TiO3 , Li2ZrO3 and Be, used as a neutron multiplier, required to achieve the required amount of tritium. The liquid concepts are based on molten salts or liquid metals as pure Li, LiPb, FLIBE or FLINABE. These blankets use, as neutron multipliers, Be or Pb (in the case of the concepts based on LiPb). Proposed structural materials comprise various options, always with low activation characteristics, as low activation ferritic-martensitic steels, vanadium alloys or even SiCf/SiC. Each concept of breeding blanket has specific challenges that will be studied in the experimental reactor ITER (International Thermonuclear Experimental Reactor). However, ITER cannot answer questions associated to material damage and the effect of neutron radiation in the different breeding blankets functions and performance. As a reference, the first wall of a fusion reactor of 4000 MW will receive about 30 dpa / year (values for Fe-56) , while values expected in ITER would be <10 dpa in its entire lifetime. Consequently, the irradiation effects on candidate materials for fusion reactors will be studied in IFMIF (International Fusion Material Irradiation Facility). This thesis fits in the framework of the bilateral agreement among Europe and Japan which is called “Broader Approach Agreement “(BA) (2007-2017) where Spain plays a key role. These projects, complementary to ITER, are mainly IFMIF and the fusion facility JT-60SA. The purpose of this thesis is the design of an irradiation module to test candidate materials for breeding blankets in IFMIF, the so-called Liquid Breeder Validation Module (LBVM). This proposal is born from the fact that this option was not considered in the conceptual design of the facility. As a first step, in order to study the feasibility of this proposal, neutronic calculations have been performed to estimate irradiation parameters in different materials foreseen for liquid breeding blankets. Various functional materials were considered: Fe (base of structural materials), SiC (candidate material for flow channel inserts, SiO2 (candidate for antipermeation coatings), CaO (candidate for insulating coatings), Al2O3 (candidate for antipermeation and insulating coatings) and AlN (candidate for insulation coating material). For each material, the most significant irradiation parameters have been calculated (dpa, H/dpa and He/dpa) in different positions of IFMIF. These values were compared to those expected in the first wall and breeding zone of a fusion reactor. For this exercise, a HCLL (Helium Cooled Lithium Lead) type was selected as it is one of the most promising options. In addition, estimated values were also compared with those obtained in a fast fission reactor since most of existing irradiations have been made in these installations. The main conclusion of this study is that the medium flux area of IFMIF offers a good irradiation environment to irradiate functional materials for liquid breeding blankets. The obtained ratios of H/dpa and He/dpa are very similar to those expected in the most irradiated areas of a fusion reactor. Moreover, with the aim of bringing the values further close, the use of a W moderator is proposed to be used only in some experimental campaigns (as obviously, the total amount of dpa decreases). The values of ratios obtained for a fission reactor, much lower than in a fusion reactor, reinforce the need of LBVM for IFMIF. Having demonstrated the suitability of IFMIF to irradiate functional materials for liquid breeding blankets, and an analysis of the main problems associated to each type of liquid breeding blanket, also presented in this thesis, three different experiments are proposed as basis for the design of the LBVM. These experiments are dedicated to the needs of a blanket HCLL type although the applicability of the module for other blankets is also discussed. Therefore, the experimental capability of the module is focused on the study of the behavior of the eutectic alloy LiPb, tritium permeation, corrosion and material compatibility. For each of the experiments proposed an experimental scheme is given explaining the different module conditions and defining the required instrumentation to control and monitor the experimental capsules. In order to carry out the proposed experiments, the LBVM is proposed, located in the medium flux area of the IFMIF hot cell, with capability of up to 16 experimental capsules. Each capsule (24-22 mm of diameter, 80 mm high) will contain the eutectic allow LiPb (up to 50 mm of capsule high) in contact with different material specimens. They will be supported inside rigs or steel pipes. Helium will be used as purge gas, to sweep the tritium generated in the eutectic and permeated through the capsule walls (continuously, during irradiation). These tubes, will be installed in a steel container providing support and cooling for the tubes and hence the inner experimental capsules. The experimental data will consist of on line monitoring signals and the analysis of purge gas by the tritium measurement station. In addition to the experimental signals, the module will produce signals having a safety function and therefore playing a major role in the operation of the module. For an adequate operation of the capsules and to control its temperature, each capsule will be equipped with an electrical heater so the module will to be connected to an electrical power supply. The technical justification behind the dimensioning of each of these parts forming the module is presented supported by tritium transport calculations, thermalhydraulic and structural analysis. One of the main conclusions of the tritium transport calculations is that the measure of the permeated tritium is perfectly achievable by commercial ionization chambers and proportional counters with sensitivity of 10-9 Bq/m3. The results are applicable to all experiments, even to low temperature capsules or to the ones using antipermeation coatings. From a safety point of view, the knowledge of the amount of tritium being swept by the purge gas is a clear indicator of certain problems that may be occurring in the module such a capsule rupture. In addition, the tritium balance in the installation should be known. Losses of purge gas permeated into the refrigerant and the hot cell itself through the container have been assessed concluding that they are negligible for normal operation. Thermal hydraulic calculations were performed in order to optimize the design of experimental capsules and LBVM to fulfill one of the main requirements of the module: to perform experiments at uniform temperatures between 300-550ºC. The necessary cooling of the module and the geometry of the capsules, rigs and testing area of the container were dimensioned. As a result of the analyses, cylindrical capsules and rigs in cylindrical compartments were selected because of their good mechanical behavior (stresses due to fluid pressure are reduced significantly with a cylindrical shape rather than prismatic) and thermal (temperature uniformity in the walls of the tubes and capsules). Fields of pressure, temperature and velocity in different critical areas of the module were obtained concluding that the proposal is feasible. It is important to mention that the use of fluid dynamic codes as ANSYS-CFX (used in this thesis) for designing experimental capsules for IFMIF is not direct. The reason for this is that, under strongly heated helium mini channels, turbulence models tend to underestimate the wall temperature because of the change of helium properties near the wall. Therefore, the different code turbulence models had to be studied in detail and validated against experimental results. ANSYS-CFX SST (Shear Stress Transport Model) for transitional turbulence model has been identified among many others as the suitable one for modeling the cooling helium and the temperature on the walls of experimental capsules. Once the geometry and the main purge and cooling parameters have been defined, the mechanical behavior of each experimental tube or rig including capsules is analyzed. Resulting stresses are compared with the maximum values recommended by applicable structural design codes such as the SDC- IC (Structural Design Criteria for ITER Components) in order to assess the degree of protection against plastic collapse. The conclusion shows that the proposal is mechanically robust. The LBVM involves the use of liquid metals, tritium and the risk associated with neutron activation. The risks related with the handling of liquid metals and tritium are studied in this thesis. In addition, the radiological risks associated with the activation of materials in the module and the residual heat after irradiation are evaluated, including a scenario of loss of coolant. Among the identified conventional risks associated with the module highlights the handling of liquid metals which reactions with water or air are accompanied by the emission of aerosols and fire probability. Regarding the nuclear risks, the generation of radioactive gases such as tritium or volatile radioisotopes such as Po-210 is the main hazard to be considered. An environmental impact associated to possible releases is not expected. Nevertheless, an appropriate handling of capsules, experimental tubes, and container including purge lines is required. After one day after shutdown and one year of irradiation, the experimental area of the module will present a contact dose rate of about 7000 Sv/h, 2300 Sv/h in the experimental capsules and 25 Sv/h in the LiPb. Therefore, the use of remote handling is envisaged for the irradiated module. Finally, the different possibilities for the module manufacturing have been studied. Among the proposed techniques highlights the electro discharge machining, brazing, electron beam welding or laser welding. The bases for the final design of the LBVM have been included in the framework of the this work and included in the intermediate design report of IFMIF which will be developed in future, as part of the IFMIF facility final design.
Resumo:
Reacción catalítica. Difusión. Reacción Heterogénea.
Resumo:
Reacción sólido-fluido no catalítica. Modelo del núcleo sin reaccionar.
Resumo:
En la Universidad de Alicante se viene aplicando el método de aprendizaje basado en proyectos (ABP) en la asignatura de “Diseño de reactores heterogéneos” desde hace varios años. Los profesores están sumamente contentos con este método, pues reciben un feedback muy interesante por parte del alumnado y se discrimina perfectamente los alumnos valiosos.
Resumo:
Los materiales lignocelulósicos residuales de las actividades agroindustriales pueden ser aprovechados como fuente de lignina, hemicelulosa y celulosa. El tratamiento químico del material lignocelulósico se debe enfrentar al hecho de que dicho material es bastante recalcitrante a tal ataque, fundamentalmente debido a la presencia del polímero lignina. Esto se puede lograr también utilizando hongos de la podredumbre blanca de la madera. Estos producen enzimas lignolíticas extracelulares fundamentalmente Lacasa, que oxida la lignina a CO2. Tambien oxida un amplio rango de sustratos ( fenoles, polifenoles, anilinas, aril-diaminas, fenoles metoxi-sustituídos, y otros), lo cual es una buena razón de su atracción para aplicaciones biotecnológicas. La enzima tiene potencial aplicación en procesos tales como en la delignificación de materiales lignocelulósicos y en el bioblanqueado de pulpas para papel, en el tratamiento de aguas residuales de plantas industriales, en la modificación de fibras y decoloración en industrias textiles y de colorantes, en el mejoramiento de alimentos para animales, en la detoxificación de polutantes y en bioremediación de suelos contaminados. También se la ha utilizado en Q.Orgánica para la oxidación de grupos funcionales, en la formación de enlaces carbono- nitrógeno y en la síntesis de productos naturales complejos. HIPOTESIS Los hongos de podredumbre blanca, y en condiciones óptimas de cultivo producen distintos tipos de enzimas oxidasas, siendo las lacasas las más adecuadas para explorarlas como catalizadores en los siguientes procesos: Delignificación de residuos de la industria forestal con el fin de aprovechar tales desechos en la alimentación animal. Decontaminación/remediación de suelos y/o efluentes industriales. Se realizarán los estudios para el diseño de bio-reactores que permitan responder a las dos cuestiones planteadas en la hipótesis. Para el proceso de delignificación de material lignocelulósico se proponen dos estrategias: 1- tratar el material con el micelio del hongo adecuando la provisión de nutrientes para un desarrollo sostenido y favorecer la liberación de la enzima. 2- Utilizar la enzima lacasa parcialmente purificada acoplada a un sistema mediador para oxidar los compuestos polifenólicos. Para el proceso de decontaminación/remediación de suelos y/o efluentes industriales se trabajará también en dos frentes: 3) por un lado, se ha descripto que existe una correlación positiva entre la actividad de algunas enzimas presentes en el suelo y la fertilidad. En este sentido se conoce que un sistema enzimático, tentativamente identificado como una lacasa de origen microbiano es responsable de la transformación de compuestos orgánicos en el suelo. La enzima protege al suelo de la acumulación de compuestos orgánicos peligrosos catalizando reacciones que involucran degradación, polimerización e incorporación a complejos del ácido húmico. Se utilizarán suelos incorporados con distintos polutantes( por ej. policlorofenoles ó cloroanilinas.) 4) Se trabajará con efluentes industriales contaminantes (alpechínes y/o el efluente líquido del proceso de desamargado de las aceitunas).