970 resultados para Induced circular dichroism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute configurations of a number of cis-dihydrodiols (cis-1,2-dihydroxy-3,5-cyclohexadienes), synthetically useful products of TDO-catalyzed dihydroxylations of 1,2- and 1,3-disubstituted benzene derivatives, have been determined by a comparison of calculated and experimental CD spectra and optical rotations and by methods involving X-ray crystallography, H-1 NMR spectra of diastereoisomeric derivatives, and by stereochemical correlations. The computations disclosed a significant effect of the substituents on conformational equilibria of cis-dihydrodiols and chiroptical properties of individual conformers. The assigned absolute configurations of cis-dihydrodiols have allowed the validity of a simple predictive model for TDO-catalyzed arene dihydroxylations to be extended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optically transparent thin-layer electrochemical (OTTLE) cell with a locally extended optical path has been developed in order to perform vibrational circular dichroism (VCD) spectroscopy on chiral molecules prepared in specific oxidation states by means of electrochemical reduction or oxidation. The new design of the electrochemical cell successfully addresses the technical challenges involved in achieving sufficient infrared absorption. The VCD-OTTLE cell proves to be a valuable tool for the investigation of chiral redox-active molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to detect the vibrational circular dichroism (VCD) of a localized part of a chiral molecular system is reported. A local VCD amplifier was implemented, and the distance dependence of the amplification was investigated in a series of peptides. The results indicate a characteristic distance of 2.0±0.3 bonds, which suggests that the amplification is a localized phenomenon. The amplifier can be covalently coupled to a specific part of a molecule, and can be switched ON and OFF electrochemically. By subtracting the VCD spectra obtained when the amplifier is in the ON and OFF states, the VCD of the local environment of the amplifier can be separated from the total VCD spectrum. Switchable local VCD amplification thus makes it possible to “zoom in” on a specific part of a chiral molecule.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental observations of enhanced vibrational circular dichroism (VCD) in molecular systems with low-lying electronically excited states suggest interesting new applications of VCD spectroscopy. The theory describing VCD enhancement through vibronic coupling schemes was derived by Nafie in 1983, but only recently experimental evidence of VCD amplification has demonstrated the extent to which this effect can be exploited as a structure elucidation tool to probe local structure. In this Concept paper, we give an overview of the physics behind vibrational circular dichroism, in particular the equations governing the VCD amplification effect, and review the latest experimental developments with a prospective view on the application of amplified VCD to locally probe biomolecular structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proline-rich N-terminal domain of gamma-zein has been reported in relevant process, which include its ability to cross the cell membranes. Evidences indicate that synthetic hexapeptide (PPPVHL), naturally found in N-terminal portion of gamma-zein, can adopt the polyproline II (PPII) conformation in aqueous solution. The secondary structure of gamma-zein in maize protein bodies had been analyzed by solid state Fourier transform infrared and nuclear magnetic resonance spectroscopies. However, it was not possible to measure PPII content in physiological environment since the beta-sheet and PPII signals overlap in both solid state techniques. Here, the secondary structure of gamma-zein has been analyzed by circular dichroism in SDS aqueous solution with and without ditiothreitol (DTT), and in 60% of 2-propanol and water with DTT The results show that gamma-zein has high helical content in all solutions. The PPII conformation was present at about 7% only in water/DTT solution. (c) 2007 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human cyclin-dependent kinase 9 (CDK9) protein was expressed in E coli BL21 using the pET23a vector at 30 degrees C. Several milligrams of protein were purified from soluble fraction using ionic exchange and ATP-affinity chromatography. The structural quality of recombinant CDK9 and the estimation of its secondary structure were obtained by circular dichroism. Structural models of CDK9 presented 26% of helices in agreement with the spectra by circular dichroism analysis. This is the first report on human CDK9 expression in Escherichia coli and structure analysis and provides the first step for the development of CDK9 inhibitors. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4- carboxylic acid (TOAC). TOAC replaced Asp 1 (TOAC 1-AII) and Val 3 (TOAC 3-AII) in AII and was inserted prior to Arg 1 (TOAC 0-BK) and replacing Pro 3 (TOAC 3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (TC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, τ C increased due to viscosity effects. Calculation of τ Cpeptide/τ CTOAC ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC 1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC 3 derivatives acquired more restricted conformations. Fluorescence spectra of All and its derivatives were especially sensitive to the ionization of Tyr 4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC 3-AII The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation. © 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend application of our lowest-order perturbative approach (in electron-electron correlation) for analysis of photo-double-ionization (PDI) of He [A.Y. Istomin et al., J. Phys. B 35, L543 (2002)] to excess energies up to 450 eV and to analysis of circular dichroism. We find that account of electron correlation in the final state to first order provides predictions for the triply differential cross section and circular dichroism that are in reasonable agreement with absolute data for excess energies up to 80 eV. For an excess energy of 450 eV, account of electron correlation in both initial and final states is necessary and the predicted triply differential cross sections are in agreement with absolute data only for large mutual ejection angles. We find that at excess energies of a few tens of eV, the PDI is dominated by the "virtual" knock-out mechanism, while the "direct" (on-shell) knock-out process gives only small contributions for large mutual ejection angles. As a result, we conclude that the circular dichroism effect at these energies originates from the nonzero electron Coulomb phase shifts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decades magnetic circular dichroism (MCD) has attracted much interest and evolved into various experimental methods for the investigation of magnetic thin films. For example, synchrotron-based X-ray magnetic circular dichroism (XMCD) displays the absolute values of spin and orbital magnetic moments. It thereby benefits from large asymmetry values of more than 30% due to the excitation of atomic core-levels. Similarly large values are also expected for threshold photoemission magnetic circular dichroism (TPMCD). Using lasers with photon energies in the range of the sample work function this method gives access to the occupied electronic structure close to the Fermi level. However, except for the case of Ni(001) there exist only few studies on TPMCD moreover revealing much smaller asymmetries than XMCD-measurements. Also the basic physical mechanisms of TPMCD are not satisfactorily understood. In this work we therefore investigate TPMCD in one- and two-photon photoemission (1PPE and 2PPE) for ferromagnetic Heusler alloys and ultrathin Co films using ultrashort pulsed laser light. The observed dichroism is explained by a non-conventional photoemission model using spin-resolved band-structure calculations and linear response theory. For the two Heusler alloys Ni2MnGa and Co2FeSi we give first evidence of TPMCD in the regime of two-photon photoemission. Systematic investigations concerning general properties of TPMCD in 1PPE and 2PPE are carried out at ultrathin Co films grown on Pt(111). Here, photon-energy dependent measurements reveal asymmetries of 1.9% in 1PPE and 11.7% in 2PPE. TPMCD measurements at decreased work function even yield larger asymmetries of 6.2% (1PPE) and 17% (2PPE), respectively. This demonstrates that enlarged asymmetries are also attainable for the TPMCD effect on Co(111). Furthermore, we find that the TPMCD asymmetry is bulk-sensitive for 1PPE and 2PPE. This means that the basic mechanism leading to the observed dichroism must be connected to Co bulk properties; surface effects do not play a crucial role. Finally, the enhanced TPMCD asymmetries in 2PPE compared to the 1PPE case are traced back to the dominant influence of the first excitation step and the existence of a real intermediate state. The observed TPMCD asymmetries cannot be interpreted by conventional photoemission theory which only considers direct interband transitions in the direction of observation (Γ-L). For Co(111), these transitions lead to evanescent final states. The excitation to such states, however, is incompatible with the measured bulk-sensitivity of the asymmetry. Therefore, we generalize this model by proposing the TPMCD signal to arise mostly from direct interband transitions in crystallographic directions other than (Γ-L). The necessary additional momentum transfer to the excited electrons is most probably provided by electron-phonon or -magnon scattering processes. Corresponding calculations on the basis of this model are in reasonable agreement with the experimental results so that this approach represents a promising tool for a quantitative description of the TPMCD effect. The present findings encourage an implementation of our experimental technique to time- and spatially-resolved photoemission electron microscopy, thereby enabling a real time imaging of magnetization dynamics of single excited states in a ferromagnetic material on a femtosecond timescale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure.