924 resultados para In-plane shear equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional molecular dynamics simulation method has been used to study the dynamic responses of an electrorheological (ER) fluid in oscillatory shear. The structure and related viscoelastic behaviour of the fluid are found to be sensitive to the amplitude of the strain. With the increase of the strain amplitude, the structure formed by the particles changes from isolated columns to sheet-like structures which may be perpendicular or parallel to the oscillating direction. Along with the structure evolution, the field-induced moduli decrease significantly with an increase in strain amplitude. The viscoelastic behaviour of the structures obtained in the cases of different strain amplitudes was examined in the linear response regime and an evident structure dependence of the moduli was found. The reason for this lies in the anisotropy of the arrangement of the particles in these structures. Short-range interactions between the particles cannot be neglected in determining the viscoelastic behaviour of ER fluids at small strain amplitude, especially for parallel sheets. The simulation results were compared with available experimental data and good agreement was reached for most of them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The disadvantage of the majority of data assimilation schemes is the assumption that the conditional probability density function of the state of the system given the observations [posterior probability density function (PDF)] is distributed either locally or globally as a Gaussian. The advantage, however, is that through various different mechanisms they ensure initial conditions that are predominantly in linear balance and therefore spurious gravity wave generation is suppressed. The equivalent-weights particle filter is a data assimilation scheme that allows for a representation of a potentially multimodal posterior PDF. It does this via proposal densities that lead to extra terms being added to the model equations and means the advantage of the traditional data assimilation schemes, in generating predominantly balanced initial conditions, is no longer guaranteed. This paper looks in detail at the impact the equivalent-weights particle filter has on dynamical balance and gravity wave generation in a primitive equation model. The primary conclusions are that (i) provided the model error covariance matrix imposes geostrophic balance, then each additional term required by the equivalent-weights particle filter is also geostrophically balanced; (ii) the relaxation term required to ensure the particles are in the locality of the observations has little effect on gravity waves and actually induces a reduction in gravity wave energy if sufficiently large; and (iii) the equivalent-weights term, which leads to the particles having equivalent significance in the posterior PDF, produces a change in gravity wave energy comparable to the stochastic model error. Thus, the scheme does not produce significant spurious gravity wave energy and so has potential for application in real high-dimensional geophysical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution X-ray diffractometry is used to probe the nature of a diffraction-peak broadening previously noticed in quantum dots (QDs) systems with freestanding InAs islands on top of GaAs (001) substrates [Freitas et al., Phys. Status Solidi (A) 204, 2548 (2007)]. The procedure is hence extended to further investigate the capping process of InAs/GaAs QDs. A direct correlation is established between QDs growth rates and misorientation of lattice-planes at the samples surfaces. This effect provides an alternative too] for studying average strain fields on QDs systems in standard triple axis diffractometers running on X-ray tube sources, which are much more common than synchrotron facilities. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we study an anisotropic layered superconducting film of finite thickness. The film surfaces are considered parallel to the be face of the crystal. The vortex lines are oriented perpendicular to the film surfaces and parallel to the superconducting planes. We calculate the local field and the London free energy for this geometry. Our calculation is a generalization of previous works where the sample is taken as a semi-infinite superconductor. As an application of this theory we investigate the flux spreading at the super conducting surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertical and in-plane electrical transport in InAs/InP semiconductors wires and dots have been investigated by conductive atomic force microscopy (C-AFM) and electrical measurements in processed devices. Localized I-V spectroscopy and spatially resolved current images (at constant bias), carried out using C-AFM in a controlled atmosphere at room temperature, show different conductances and threshold voltages for current onset on the two types of nanostructures. The processed devices were used in order to access the in-plane conductance of an assembly with a reduced number of nanostructures. On these devices, signature of two-level random telegraph noise (RTN) in the current behavior with time at constant bias is observed. These levels for electrical current can be associated to electrons removed from the wetting layer and trapped in dots and/or wires. A crossover from conduction through the continuum, associated to the wetting layer, to hopping within the nanostructures is observed with increasing temperature. This transport regime transition is confirmed by a temperature-voltage phase diagram. © 2005 Materials Research Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze here the spin and pseudospin symmetry for the antinucleon spectra solving the Dirac equation with scalar and vector Wood-Saxon potentials. In relativistic nuclear mean field theories where these potentials have large magnitudes and opposite signs we show that contrary to the nucleon case where pseudospin interaction is never very small and cannot be treated perturbatively, for antinucleon systems this interaction is perturbative and an exact pseudospin symmetry is possible. This result manifests the relativistic nature of the nuclear pseudospin symmetry. © 2009 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the investigation on the structural differences between InAs quantum rings and their precursor quantum dots species as well as on the presence of piezoelectric fields and asymmetries in these nanostructures. The experimental results show significant reduction in the ring dimensions when the sizes of capped and uncapped ring and dot samples are compared. The iso-lattice parameter mapped by grazing-incidence x-ray diffraction has revealed the lateral extent of strained regions in the buried rings. A comparison between strain and composition of dot and ring structures allows inferring on how the ring formation and its final configuration may affect optical response parameters. Based on the experimental observations, a discussion has been introduced on the effective potential profile to emulate theoretically the ring-shape confinement. The effects of confinement and strain field modulation on electron and hole band structures are simulated by a multiband k.p calculation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733964]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of test method factors (notch shape, square or angular, and pre-cracking method, by tapping onto or pressing a razor blade) on the results obtained in plane strain fracture toughness test according to standard ASTM D5045 using SENB specimens made of a commercial PMMA resin were investigated. Results were analyzed quantitatively by comparing the obtained K-IC values and qualitatively by observing their effect on the Moire fringes observed using photoelasticity, showing that, at 95% significance level, the K-IC values are affected by the pre-cracking method, with the most conservative value being obtained when natural pre-cracks were introduced by tapping onto a razor blade (K-IC = 1.15 +/- 0.11 MPa.m(0.5)). This correlates with a perturbation in the stress field close to the pre-crack tip observed in the photoelasticity test sample when it was introduced by pressing the razor blade. Surprisingly, notch geometry only slightly affects the results. (C) 2012 Elsevier Ltd. All rights reserved.