958 resultados para INTERVALS
Resumo:
BACKGROUND: PET/CT scanning can determine suitability for curative therapy and inform decision making when considering radical therapy in patients with non-small cell lung cancer (NSCLC). Metastases to central mediastinal lymph nodes (N2) may alter such management decisions. We report a 2 year retrospective series assessing N2 lymph node staging accuracy with PET/CT compared to pathological analysis at surgery.
METHODS: Patients with NSCLC attending our centre (excluding those who had induction chemotherapy) who had staging PET/CT scans and pathological nodal sampling between June 2006 and June 2008 were analysed. For each lymph node assessed pathologically, the corresponding PET/CT status was determined. 64 patients with 200 N2 lymph nodes were analysed.
RESULTS: Sensitivity of PET/CT scans for indentifying involved N2 lymph nodes was
39%, specificity 96% and overall accuracy 90%. For individual lymph node analysis, logistic regression demonstrated a significant linear association between PET/CT sensitivity and time from scanning to surgery (p=0.031) but not for specificity and accuracy. Those scanned <9 weeks before pathological sampling were significantly more sensitive (64% >9 weeks, 0% ≥ 9 weeks, p=0.013) and more accurate (94% <9 weeks, 81% ≥ 9 weeks, p=0.007). Differences in specificity were not seen (97% <9 weeks, 91% ≥ 9 weeks, p=0.228). No significant difference in specificity was found at any time point.
CONCLUSIONS: We recommend that if a PET/CT scan is older than 9 weeks, and management would be altered by the presence of N2 nodes, re-staging of the
mediastinum should be undertaken.
Resumo:
Soit $p_1 = 2, p_2 = 3, p_3 = 5,\ldots$ la suite des nombres premiers, et soient $q \ge 3$ et $a$ des entiers premiers entre eux. R\'ecemment, Daniel Shiu a d\'emontr\'e une ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjectur\'e qu'il existe une infinit\'e de couples $p_n,p_{n+1}$ de premiers cons\'ecutifs tels que $p_n \equiv p_{n+1} \equiv a \bmod q$. Fixons $\epsilon > 0$. Une r\'ecente perc\'ee majeure, de Daniel Goldston, J\`anos Pintz et Cem Y{\i}ld{\i}r{\i}m, a \'et\'e de d\'emontrer qu'il existe une suite de nombres r\'eels $x$ tendant vers l'infini, tels que l'intervalle $(x,x+\epsilon\log x]$ contienne au moins deux nombres premiers $\equiv a \bmod q$. \'Etant donn\'e un couple de nombres premiers $\equiv a \bmod q$ dans un tel intervalle, il pourrait exister un nombre premier compris entre les deux qui n'est pas $\equiv a \bmod q$. On peut d\'eduire que soit il existe une suite de r\'eels $x$ tendant vers l'infini, telle que $(x,x+\epsilon\log x]$ contienne un triplet $p_n,p_{n+1},p_{n+2}$ de nombres premiers cons\'ecutifs, soit il existe une suite de r\'eels $x$, tendant vers l'infini telle que l'intervalle $(x,x+\epsilon\log x]$ contienne un couple $p_n,p_{n+1}$ de nombres premiers tel que $p_n \equiv p_{n+1} \equiv a \bmod q$. On pense que les deux \'enonc\'es sont vrais, toutefois on peut seulement d\'eduire que l'un d'entre eux est vrai, sans savoir lequel. Dans la premi\`ere partie de cette th\`ese, nous d\'emontrons que le deuxi\`eme \'enonc\'e est vrai, ce qui fournit une nouvelle d\'emonstration de la conjecture de Chowla. La preuve combine des id\'ees de Shiu et de Goldston-Pintz-Y{\i}ld{\i}r{\i}m, donc on peut consid\'erer que ce r\'esultat est une application de leurs m\'thodes. Ensuite, nous fournirons des bornes inf\'erieures pour le nombre de couples $p_n,p_{n+1}$ tels que $p_n \equiv p_{n+1} \equiv a \bmod q$, $p_{n+1} - p_n < \epsilon\log p_n$, avec $p_{n+1} \le Y$. Sous l'hypoth\`ese que $\theta$, le \og niveau de distribution \fg{} des nombres premiers, est plus grand que $1/2$, Goldston-Pintz-Y{\i}ld{\i}r{\i}m ont r\'eussi \`a d\'emontrer que $p_{n+1} - p_n \ll_{\theta} 1$ pour une infinit\'e de couples $p_n,p_{n+1}$. Sous la meme hypoth\`ese, nous d\'emontrerons que $p_{n+1} - p_n \ll_{q,\theta} 1$ et $p_n \equiv p_{n+1} \equiv a \bmod q$ pour une infinit\'e de couples $p_n,p_{n+1}$, et nous prouverons \'egalement un r\'esultat quantitatif. Dans la deuxi\`eme partie, nous allons utiliser les techniques de Goldston-Pintz-Y{\i}ld{\i}r{\i}m pour d\'emontrer qu'il existe une infinit\'e de couples de nombres premiers $p,p'$ tels que $(p-1)(p'-1)$ est une carr\'e parfait. Ce resultat est une version approximative d'une ancienne conjecture qui stipule qu'il existe une infinit\'e de nombres premiers $p$ tels que $p-1$ est une carr\'e parfait. En effet, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $n = \ell_1\cdots \ell_r$, avec $\ell_1,\ldots,\ell_r$ des premiers distincts, et tels que $(\ell_1-1)\cdots (\ell_r-1)$ est une puissance $r$-i\`eme, avec $r \ge 2$ quelconque. \'Egalement, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n = \ell_1\cdots \ell_r \le Y$ tels que $(\ell_1+1)\cdots (\ell_r+1)$ est une puissance $r$-i\`eme. Finalement, \'etant donn\'e $A$ un ensemble fini d'entiers non-nuls, nous d\'emontrerons une borne inf\'erieure sur le nombre d'entiers naturels $n \le Y$ tels que $\prod_{p \mid n} (p+a)$ est une puissance $r$-i\`eme, simultan\'ement pour chaque $a \in A$.
Resumo:
We propose a novel, simple, efficient and distribution-free re-sampling technique for developing prediction intervals for returns and volatilities following ARCH/GARCH models. In particular, our key idea is to employ a Box–Jenkins linear representation of an ARCH/GARCH equation and then to adapt a sieve bootstrap procedure to the nonlinear GARCH framework. Our simulation studies indicate that the new re-sampling method provides sharp and well calibrated prediction intervals for both returns and volatilities while reducing computational costs by up to 100 times, compared to other available re-sampling techniques for ARCH/GARCH models. The proposed procedure is illustrated by an application to Yen/U.S. dollar daily exchange rate data.
Resumo:
The aim of this paper is the investigation of the error which results from the method of approximate approximations applied to functions defined on compact in- tervals, only. This method, which is based on an approximate partition of unity, was introduced by V. Mazya in 1991 and has mainly been used for functions defied on the whole space up to now. For the treatment of differential equations and boundary integral equations, however, an efficient approximation procedure on compact intervals is needed. In the present paper we apply the method of approximate approximations to functions which are defined on compact intervals. In contrast to the whole space case here a truncation error has to be controlled in addition. For the resulting total error pointwise estimates and L1-estimates are given, where all the constants are determined explicitly.
Resumo:
In this paper, robustness of parametric systems is analyzed using a new approach to interval mathematics called Modal Interval Analysis. Modal Intervals are an interval extension that, instead of classic intervals, recovers some of the properties required by a numerical system. Modal Interval Analysis not only simplifies the computation of interval functions but allows semantic interpretation of their results. Necessary, sufficient and, in some cases, necessary and sufficient conditions for robust performance are presented
Resumo:
PowerPoint slides for Confidence Intervals. Examples are taken from the Medical Literature
Resumo:
lecture for COMP6235
Resumo:
This study assessed visual working memory through Memonum computerized test in schoolchildren. The effects of three exposure times (1, 4 and 8 seconds) have been evaluated, and the presentation of a distractor on the mnemonic performance in the test Memonum in 72 children from a college in the metropolitan area of Bucaramanga, Colombia, aged between 8 and 11 in grades third, fourth and fifth grade. It has been found significant difference regarding the exposure time in the variables number of hits and successes accumulated, showing a better mnemonic performance in participants who took the test during 8 seconds compared to children who took the test during 1 second; in addition, the presence of a distractor showed a significant difference regarding the strengths and successes accumulated. Such distractor is considered a stimulus generator interference that disrupts the storage capacity of working memory in children. Additionally, a significant difference was found with respect to the use of mental rehearsal strategy, indicating that participants who took the test in 4 and 8 seconds, respectively, assigned higher scores than children who took the test in 1 second. A long exposure time to stimuli during Memonum test increases the holding capacity. Also, the use of a distractor affects the storage capacity and this, at the same time, increases the school progression due to the use of mnemonic strategies that children use to ensure the memory of the numerical series
Resumo:
Les restriccions reals quantificades (QRC) formen un formalisme matemàtic utilitzat per modelar un gran nombre de problemes físics dins els quals intervenen sistemes d'equacions no-lineals sobre variables reals, algunes de les quals podent ésser quantificades. Els QRCs apareixen en nombrosos contextos, com l'Enginyeria de Control o la Biologia. La resolució de QRCs és un domini de recerca molt actiu dins el qual es proposen dos enfocaments diferents: l'eliminació simbòlica de quantificadors i els mètodes aproximatius. Tot i això, la resolució de problemes de grans dimensions i del cas general, resten encara problemes oberts. Aquesta tesi proposa una nova metodologia aproximativa basada en l'Anàlisi Intervalar Modal, una teoria matemàtica que permet resoldre problemes en els quals intervenen quantificadors lògics sobre variables reals. Finalment, dues aplicacions a l'Enginyeria de Control són presentades. La primera fa referència al problema de detecció de fallades i la segona consisteix en un controlador per a un vaixell a vela.
Resumo:
The water vapour continuum absorption is an important component of molecular absorption of radiation in atmosphere. However, uncertainty in knowledge of the value of the continuum absorption at present can achieve 100% in different spectral regions leading to an error in flux calculation up to 3-5 W/m2 global mean. This work uses line-by-line calculations to reveal the best spectral intervals for experimental verification of the CKD water vapour continuum models in the currently least studied near-infrared spectral region. Possible sources of errors in continuum retrieval taken into account in the simulation include the sensitivity of laboratory spectrometers and uncertainties in the spectral line parameters in HITRAN-2004 and Schwenke-Partridge database. It is shown that a number of micro-windows in near-IR can be used at present for laboratory detection of the water vapour continuum with estimated accuracy from 30 to 5%.
Resumo:
Methods of improving the coverage of Box–Jenkins prediction intervals for linear autoregressive models are explored. These methods use bootstrap techniques to allow for parameter estimation uncertainty and to reduce the small-sample bias in the estimator of the models’ parameters. In addition, we also consider a method of bias-correcting the non-linear functions of the parameter estimates that are used to generate conditional multi-step predictions.
Resumo:
The calculation of interval forecasts for highly persistent autoregressive (AR) time series based on the bootstrap is considered. Three methods are considered for countering the small-sample bias of least-squares estimation for processes which have roots close to the unit circle: a bootstrap bias-corrected OLS estimator; the use of the Roy–Fuller estimator in place of OLS; and the use of the Andrews–Chen estimator in place of OLS. All three methods of bias correction yield superior results to the bootstrap in the absence of bias correction. Of the three correction methods, the bootstrap prediction intervals based on the Roy–Fuller estimator are generally superior to the other two. The small-sample performance of bootstrap prediction intervals based on the Roy–Fuller estimator are investigated when the order of the AR model is unknown, and has to be determined using an information criterion.
Resumo:
Recently, in order to accelerate drug development, trials that use adaptive seamless designs such as phase II/III clinical trials have been proposed. Phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages. Using stage 1 data, an interim analysis is performed to answer phase II objectives and after collection of stage 2 data, a final confirmatory analysis is performed to answer phase III objectives. In this paper we consider phase II/III clinical trials in which, at stage 1, several experimental treatments are compared to a control and the apparently most effective experimental treatment is selected to continue to stage 2. Although these trials are attractive because the confirmatory analysis includes phase II data from stage 1, the inference methods used for trials that compare a single experimental treatment to a control and do not have an interim analysis are no longer appropriate. Several methods for analysing phase II/III clinical trials have been developed. These methods are recent and so there is little literature on extensive comparisons of their characteristics. In this paper we review and compare the various methods available for constructing confidence intervals after phase II/III clinical trials.
Resumo:
In the present work a comparative quantitative evaluation of the differential effects of neuromuscular blockers on twitches and tetani was performed, encompassing: atracurium, cisatracurium, mivacurium, pancuronium, rocuronium and vecuronium. The sciatic nerve-extensor digitorum longus muscle of the rat was used, in vitro. Twitches were evoked at 0.1 Hz and tetani at 50 Hz. The differential effects of the studied compounds on twitches and tetani were statistically compared using simultaneous confidence intervals for the ratios between mean IC(50) for the block of twitches and mean IC(50) for the block of tetani. The results of ratios of mean IC(50) together with their corresponding 95% simultaneous confidence intervals were: vecuronium: 2.5 (1.8-3.5); mivacurium: 3.8 (3.0-4.9); pancuronium: 3.9 (2.0-7.6); rocuronium: 6.1 (3.8-9.9); atracurium: 9.0 (6.4-12.6); cisatracurium: 13.1 (6.0-28.4). Using the criteria that neuromuscular blockers displaying disjunct confidence intervals for the ratios of mean IC(50) differ statistically with regard to differential effects on twitches and tetani, significant differences in ratios of IC(50) were detected in the following cases: vecuronium vs. rocuronium, vs. atracurium and vs. cisatracurium and mivacurium vs: cisatracurium and vs. atracurium. The results show that the magnitude of the differential effects of neuromuscular blockers on twitches and tetani, as evaluated in the present work in the form of ratios of mean IC(50), does not depend on the chemical structure (comparing steroidal and isoquinolinic compounds), but seems to depend on differential pre- and post-synaptic effects of the compounds. It is also suggested that the greater the ability of a compound to block twitches and tetani in a differential manner, the safer is the compound from the clinical anesthesiology viewpoint.