15 resultados para INTERVALS

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, a method to retrieve the source finiteness, depth of faulting, and the mechanisms of large earthquakes from long-period surface waves is developed and applied to several recent large events.

In Chapter 1, source finiteness parameters of eleven large earthquakes were determined from long-period Rayleigh waves recorded at IDA and GDSN stations. The basic data set is the seismic spectra of periods from 150 to 300 sec. Two simple models of source finiteness are studied. The first model is a point source with finite duration. In the determination of the duration or source-process times, we used Furumoto's phase method and a linear inversion method, in which we simultaneously inverted the spectra and determined the source-process time that minimizes the error in the inversion. These two methods yielded consistent results. The second model is the finite fault model. Source finiteness of large shallow earthquakes with rupture on a fault plane with a large aspect ratio was modeled with the source-finiteness function introduced by Ben-Menahem. The spectra were inverted to find the extent and direction of the rupture of the earthquake that minimize the error in the inversion. This method is applied to the 1977 Sumbawa, Indonesia, 1979 Colombia-Ecuador, 1983 Akita-Oki, Japan, 1985 Valparaiso, Chile, and 1985 Michoacan, Mexico earthquakes. The method yielded results consistent with the rupture extent inferred from the aftershock area of these earthquakes.

In Chapter 2, the depths and source mechanisms of nine large shallow earthquakes were determined. We inverted the data set of complex source spectra for a moment tensor (linear) or a double couple (nonlinear). By solving a least-squares problem, we obtained the centroid depth or the extent of the distributed source for each earthquake. The depths and source mechanisms of large shallow earthquakes determined from long-period Rayleigh waves depend on the models of source finiteness, wave propagation, and the excitation. We tested various models of the source finiteness, Q, the group velocity, and the excitation in the determination of earthquake depths.

The depth estimates obtained using the Q model of Dziewonski and Steim (1982) and the excitation functions computed for the average ocean model of Regan and Anderson (1984) are considered most reasonable. Dziewonski and Steim's Q model represents a good global average of Q determined over a period range of the Rayleigh waves used in this study. Since most of the earthquakes studied here occurred in subduction zones Regan and Anderson's average ocean model is considered most appropriate.

Our depth estimates are in general consistent with the Harvard CMT solutions. The centroid depths and their 90 % confidence intervals (numbers in the parentheses) determined by the Student's t test are: Colombia-Ecuador earthquake (12 December 1979), d = 11 km, (9, 24) km; Santa Cruz Is. earthquake (17 July 1980), d = 36 km, (18, 46) km; Samoa earthquake (1 September 1981), d = 15 km, (9, 26) km; Playa Azul, Mexico earthquake (25 October 1981), d = 41 km, (28, 49) km; El Salvador earthquake (19 June 1982), d = 49 km, (41, 55) km; New Ireland earthquake (18 March 1983), d = 75 km, (72, 79) km; Chagos Bank earthquake (30 November 1983), d = 31 km, (16, 41) km; Valparaiso, Chile earthquake (3 March 1985), d = 44 km, (15, 54) km; Michoacan, Mexico earthquake (19 September 1985), d = 24 km, (12, 34) km.

In Chapter 3, the vertical extent of faulting of the 1983 Akita-Oki, and 1977 Sumbawa, Indonesia earthquakes are determined from fundamental and overtone Rayleigh waves. Using fundamental Rayleigh waves, the depths are determined from the moment tensor inversion and fault inversion. The observed overtone Rayleigh waves are compared to the synthetic overtone seismograms to estimate the depth of faulting of these earthquakes. The depths obtained from overtone Rayleigh waves are consistent with the depths determined from fundamental Rayleigh waves for the two earthquakes. Appendix B gives the observed seismograms of fundamental and overtone Rayleigh waves for eleven large earthquakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis revolves around erasure correction coding, as applied to distributed data storage and real-time streaming communications.

First, we examine the problem of allocating a given storage budget over a set of nodes for maximum reliability. The objective is to find an allocation of the budget that maximizes the probability of successful recovery by a data collector accessing a random subset of the nodes. This optimization problem is challenging in general because of its combinatorial nature, despite its simple formulation. We study several variations of the problem, assuming different allocation models and access models, and determine the optimal allocation and the optimal symmetric allocation (in which all nonempty nodes store the same amount of data) for a variety of cases. Although the optimal allocation can have nonintuitive structure and can be difficult to find in general, our results suggest that, as a simple heuristic, reliable storage can be achieved by spreading the budget maximally over all nodes when the budget is large, and spreading it minimally over a few nodes when it is small. Coding would therefore be beneficial in the former case, while uncoded replication would suffice in the latter case.

Second, we study how distributed storage allocations affect the recovery delay in a mobile setting. Specifically, two recovery delay optimization problems are considered for a network of mobile storage nodes: the maximization of the probability of successful recovery by a given deadline, and the minimization of the expected recovery delay. We show that the first problem is closely related to the earlier allocation problem, and solve the second problem completely for the case of symmetric allocations. It turns out that the optimal allocations for the two problems can be quite different. In a simulation study, we evaluated the performance of a simple data dissemination and storage protocol for mobile delay-tolerant networks, and observed that the choice of allocation can have a significant impact on the recovery delay under a variety of scenarios.

Third, we consider a real-time streaming system where messages created at regular time intervals at a source are encoded for transmission to a receiver over a packet erasure link; the receiver must subsequently decode each message within a given delay from its creation time. For erasure models containing a limited number of erasures per coding window, per sliding window, and containing erasure bursts whose maximum length is sufficiently short or long, we show that a time-invariant intrasession code asymptotically achieves the maximum message size among all codes that allow decoding under all admissible erasure patterns. For the bursty erasure model, we also show that diagonally interleaved codes derived from specific systematic block codes are asymptotically optimal over all codes in certain cases. We also study an i.i.d. erasure model in which each transmitted packet is erased independently with the same probability; the objective is to maximize the decoding probability for a given message size. We derive an upper bound on the decoding probability for any time-invariant code, and show that the gap between this bound and the performance of a family of time-invariant intrasession codes is small when the message size and packet erasure probability are small. In a simulation study, these codes performed well against a family of random time-invariant convolutional codes under a number of scenarios.

Finally, we consider the joint problems of routing and caching for named data networking. We propose a backpressure-based policy that employs virtual interest packets to make routing and caching decisions. In a packet-level simulation, the proposed policy outperformed a basic protocol that combines shortest-path routing with least-recently-used (LRU) cache replacement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes the active structures of Myanmar and its surrounding regions, and the earthquake geology of the major active structures. Such investigation is needed urgently for this rapidly developing country that has suffered from destructive earthquakes in its long history. To archive a better understanding of the regional active tectonics and the seismic potential in the future, we utilized a global digital elevation model and optical satellite imagery to describe geomorphologic evidence for the principal neotectonic features of the western half of the Southeast Asia mainland. Our investigation shows three distinct active structural systems that accommodate the oblique convergence between the Indian plate and Southeast Asia and the extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Each of these active deformation belts can be further separated into several neotectonic domains, in which structures show distinctive active behaviors from one to another.

In order to better understand the behaviors of active structures, we focused on the active characteristics of the right-lateral Sagaing fault and the oblique subducting northern Sunda megathrust in the second part of this thesis. The detailed geomorphic investigations along these two major plate-interface faults revealed the recent slip behavior of these structures, and plausible recurrence intervals of major seismic events. We also documented the ground deformation of the 2011 Tarlay earthquake in remote eastern Myanmar from remote sensing datasets and post-earthquake field investigations. The field observation and the remote sensing measurements of surface ruptures of the Tarlay earthquake are the first study of this kind in the Myanmar region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long paleoseismic histories are necessary for understanding the full range of behavior of faults, as the most destructive events often have recurrence intervals longer than local recorded history. The Sunda megathrust, the interface along which the Australian plate subducts beneath Southeast Asia, provides an ideal natural laboratory for determining a detailed paleoseismic history over many seismic cycles. The outer-arc islands above the seismogenic portion of the megathrust cyclically rise and subside in response to processes on the underlying megathrust, providing uncommonly good illumination of megathrust behavior. Furthermore, the growth histories of coral microatolls, which record tectonic uplift and subsidence via relative sea level, can be used to investigate the detailed coseismic and interseismic deformation patterns. One particularly interesting area is the Mentawai segment of the megathrust, which has been shown to characteristically fail in a series of ruptures over decades, rather than a single end-to-end rupture. This behavior has been termed a seismic “supercycle.” Prior to the current rupture sequence, which began in 2007, the segment previously ruptured during the 14th century, the late 16th to late 17th century, and most recently during historical earthquakes in 1797 and 1833. In this study, we examine each of these previous supercycles in turn.

First, we expand upon previous analysis of the 1797–1833 rupture sequence with a comprehensive review of previously published coral microatoll data and the addition of a significant amount of new data. We present detailed maps of coseismic uplift during the two great earthquakes and of interseismic deformation during the periods 1755–1833 and 1950–1997 and models of the corresponding slip and coupling on the underlying megathrust. We derive magnitudes of Mw 8.7–9.0 for the two historical earthquakes, and determine that the 1797 earthquake fundamentally changed the state of coupling on the fault for decades afterward. We conclude that while major earthquakes generally do not involve rupture of the entire Mentawai segment, they undoubtedly influence the progression of subsequent ruptures, even beyond their own rupture area. This concept is of vital importance for monitoring and forecasting the progression of the modern rupture sequence.

Turning our attention to the 14th century, we present evidence of a shallow slip event in approximately A.D. 1314, which preceded the “conventional” megathrust rupture sequence. We calculate a suite of slip models, slightly deeper and/or larger than the 2010 Pagai Islands earthquake, that are consistent with the large amount of subsidence recorded at our study site. Sea-level records from older coral microatolls suggest that these events occur at least once every millennium, but likely far less frequently than their great downdip neighbors. The revelation that shallow slip events are important contributors to the seismic cycle of the Mentawai segment further complicates our understanding of this subduction megathrust and our assessment of the region’s exposure to seismic and tsunami hazards.

Finally, we present an outline of the complex intervening rupture sequence that took place in the 16th and 17th centuries, which involved at least five distinct uplift events. We conclude that each of the supercycles had unique features, and all of the types of fault behavior we observe are consistent with highly heterogeneous frictional properties of the megathrust beneath the south-central Mentawai Islands. We conclude that the heterogeneous distribution of asperities produces terminations and overlap zones between fault ruptures, resulting in the seismic “supercycle” phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis I apply paleomagnetic techniques to paleoseismological problems. I investigate the use of secular-variation magnetostratigraphy to date prehistoric earthquakes; I identify liquefaction remanent magnetization (LRM), and I quantify coseismic deformation within a fault zone by measuring the rotation of paleomagnetic vectors.

In Chapter 2 I construct a secular-variation reference curve for southern California. For this curve I measure three new well-constrained paleomagnetic directions: two from the Pallett Creek paleoseismological site at A.D. 1397-1480 and A.D. 1465-1495, and one from Panum Crater at A.D. 1325-1365. To these three directions I add the best nine data points from the Sternberg secular-variation curve, five data points from Champion, and one point from the A.D. 1480 eruption of Mt. St. Helens. I derive the error due to the non-dipole field that is added to these data by the geographical correction to southern California. Combining these yields a secular variation curve for southern California covering the period A.D. 670 to 1910, with the best coverage in the range A.D. 1064 to 1505.

In Chapter 3 I apply this curve to a problem in southern California. Two paleoseismological sites in the Salton trough of southern California have sediments deposited by prehistoric Lake Cahuilla. At the Salt Creek site I sampled sediments from three different lakes, and at the Indio site I sampled sediments from four different lakes. Based upon the coinciding paleomagnetic directions I correlate the oldest lake sampled at Salt Creek with the oldest lake sampled at Indio. Furthermore, the penultimate lake at Indio does not appear to be present at Salt Creek. Using the secular variation curve I can assign the lakes at Salt Creek to broad age ranges of A.D. 800 to 1100, A.D. 1100 to 1300, and A.D. 1300 to 1500. This example demonstrates the large uncertainties in the secular variation curve and the need to construct curves from a limited geographical area.

Chapter 4 demonstrates that seismically induced liquefaction can cause resetting of detrital remanent magnetization and acquisition of a liquefaction remanent magnetization (LRM). I sampled three different liquefaction features, a sandbody formed in the Elsinore fault zone, diapirs from sediments of Mono Lake, and a sandblow in these same sediments. In every case the liquefaction features showed stable magnetization despite substantial physical disruption. In addition, in the case of the sandblow and the sandbody, the intensity of the natural remanent magnetization increased by up to an order of magnitude.

In Chapter 5 I apply paleomagnetics to measuring the tectonic rotations in a 52 meter long transect across the San Andreas fault zone at the Pallett Creek paleoseismological site. This site has presented a significant problem because the brittle long-term average slip-rate across the fault is significantly less than the slip-rate from other nearby sites. I find sections adjacent to the fault with tectonic rotations of up to 30°. If interpreted as block rotations, the non-brittle offset was 14.0+2.8, -2.1 meters in the last three earthquakes and 8.5+1.0, -0.9 meters in the last two. Combined with the brittle offset in these events, the last three events all had about 6 meters of total fault offset, even though the intervals between them were markedly different.

In Appendix 1 I present a detailed description of my standard sampling and demagnetization procedure.

In Appendix 2 I present a detailed discussion of the study at Panum Crater that yielded the well-constrained paleomagnetic direction for use in developing secular variation curve in Chapter 2. In addition, from sampling two distinctly different clast types in a block-and-ash flow deposit from Panum Crater, I find that this flow had a complex emplacement and cooling history. Angular, glassy "lithic" blocks were emplaced at temperatures above 600° C. Some of these had cooled nearly completely, whereas others had cooled only to 450° C, when settling in the flow rotated the blocks slightly. The partially cooled blocks then finished cooling without further settling. Highly vesicular, breadcrusted pumiceous clasts had not yet cooled to 600° C at the time of these rotations, because they show a stable, well clustered, unidirectional magnetic vector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancellation of interfering frequency-modulated (FM) signals is investigated with emphasis towards applications on the cellular telephone channel as an important example of a multiple access communications system. In order to fairly evaluate analog FM multiaccess systems with respect to more complex digital multiaccess systems, a serious attempt to mitigate interference in the FM systems must be made. Information-theoretic results in the field of interference channels are shown to motivate the estimation and subtraction of undesired interfering signals. This thesis briefly examines the relative optimality of the current FM techniques in known interference channels, before pursuing the estimation and subtracting of interfering FM signals.

The capture-effect phenomenon of FM reception is exploited to produce simple interference-cancelling receivers with a cross-coupled topology. The use of phase-locked loop receivers cross-coupled with amplitude-tracking loops to estimate the FM signals is explored. The theory and function of these cross-coupled phase-locked loop (CCPLL) interference cancellers are examined. New interference cancellers inspired by optimal estimation and the CCPLL topology are developed, resulting in simpler receivers than those in prior art. Signal acquisition and capture effects in these complex dynamical systems are explained using the relationship of the dynamical systems to adaptive noise cancellers.

FM interference-cancelling receivers are considered for increasing the frequency reuse in a cellular telephone system. Interference mitigation in the cellular environment is seen to require tracking of the desired signal during time intervals when it is not the strongest signal present. Use of interference cancelling in conjunction with dynamic frequency-allocation algorithms is viewed as a way of improving spectrum efficiency. Performance of interference cancellers indicates possibilities for greatly increased frequency reuse. The economics of receiver improvements in the cellular system is considered, including both the mobile subscriber equipment and the provider's tower (base station) equipment.

The thesis is divided into four major parts and a summary: the introduction, motivations for the use of interference cancellation, examination of the CCPLL interference canceller, and applications to the cellular channel. The parts are dependent on each other and are meant to be read as a whole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The σD values of nitrated cellulose from a variety of trees covering a wide geographic range have been measured. These measurements have been used to ascertain which factors are likely to cause σD variations in cellulose C-H hydrogen.

It is found that a primary source of tree σD variation is the σD variation of the environmental precipitation. Superimposed on this are isotopic variations caused by the transpiration of the leaf water incorporated by the tree. The magnitude of this transpiration effect appears to be related to relative humidity.

Within a single tree, it is found that the hydrogen isotope variations which occur for a ring sequence in one radial direction may not be exactly the same as those which occur in a different direction. Such heterogeneities appear most likely to occur in trees with asymmetric ring patterns that contain reaction wood. In the absence of reaction wood such heterogeneities do not seem to occur. Thus, hydrogen isotope analyses of tree ring sequences should be performed on trees which do not contain reaction wood.

Comparisons of tree σD variations with variations in local climate are performed on two levels: spatial and temporal. It is found that the σD values of 20 North American trees from a wide geographic range are reasonably well-correlated with the corresponding average annual temperature. The correlation is similar to that observed for a comparison of the σD values of annual precipitation of 11 North American sites with annual temperature. However, it appears that this correlation is significantly disrupted by trees which grew on poorly drained sites such as those in stagnant marshes. Therefore, site selection may be important in choosing trees for climatic interpretation of σD values, although proper sites do not seem to be uncommon.

The measurement of σD values in 5-year samples from the tree ring sequences of 13 trees from 11 North American sites reveals a variety of relationships with local climate. As it was for the spatial σD vs climate comparison, site selection is also apparently important for temporal tree σD vs climate comparisons. Again, it seems that poorly-drained sites are to be avoided. For nine trees from different "well-behaved" sites, it was found that the local climatic variable best related to the σD variations was not the same for all sites.

Two of these trees showed a strong negative correlation with the amount of local summer precipitation. Consideration of factors likely to influence the isotopic composition of summer rain suggests that rainfall intensity may be important. The higher the intensity, the lower the σD value. Such an effect might explain the negative correlation of σD vs summer precipitation amount for these two trees. A third tree also exhibited a strong correlation with summer climate, but in this instance it was a positive correlation of σD with summer temperature.

The remaining six trees exhibited the best correlation between σD values and local annual climate. However, in none of these six cases was it annual temperature that was the most important variable. In fact annual temperature commonly showed no relationship at all with tree σD values. Instead, it was found that a simple mass balance model incorporating two basic assumptions yielded parameters which produced the best relationships with tree σD values. First, it was assumed that the σD values of these six trees reflected the σD values of annual precipitation incorporated by these trees. Second, it was assumed that the σD value of the annual precipitation was a weighted average of two seasonal isotopic components: summer and winter. Mass balance equations derived from these assumptions yielded combinations of variables that commonly showed a relationship with tree σD values where none had previously been discerned.

It was found for these "well-behaved" trees that not all sample intervals in a σD vs local climate plot fell along a well-defined trend. These departures from the local σD VS climate norm were defined as "anomalous". Some of these anomalous intervals were common to trees from different locales. When such widespread commonalty of an anomalous interval occurred, it was observed that the interval corresponded to an interval in which drought had existed in the North American Great Plains.

Consequently, there appears to be a combination of both local and large scale climatic information in the σD variations of tree cellulose C-H hydrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wide field-of-view (FOV) microscopy is of high importance to biological research and clinical diagnosis where a high-throughput screening of samples is needed. This thesis presents the development of several novel wide FOV imaging technologies and demonstrates their capabilities in longitudinal imaging of living organisms, on the scale of viral plaques to live cells and tissues.

The ePetri Dish is a wide FOV on-chip bright-field microscope. Here we applied an ePetri platform for plaque analysis of murine norovirus 1 (MNV-1). The ePetri offers the ability to dynamically track plaques at the individual cell death event level over a wide FOV of 6 mm × 4 mm at 30 min intervals. A density-based clustering algorithm is used to analyze the spatial-temporal distribution of cell death events to identify plaques at their earliest stages. We also demonstrate the capabilities of the ePetri in viral titer count and dynamically monitoring plaque formation, growth, and the influence of antiviral drugs.

We developed another wide FOV imaging technique, the Talbot microscope, for the fluorescence imaging of live cells. The Talbot microscope takes advantage of the Talbot effect and can generate a focal spot array to scan the fluorescence samples directly on-chip. It has a resolution of 1.2 μm and a FOV of ~13 mm2. We further upgraded the Talbot microscope for the long-term time-lapse fluorescence imaging of live cell cultures, and analyzed the cells’ dynamic response to an anticancer drug.

We present two wide FOV endoscopes for tissue imaging, named the AnCam and the PanCam. The AnCam is based on the contact image sensor (CIS) technology, and can scan the whole anal canal within 10 seconds with a resolution of 89 μm, a maximum FOV of 100 mm × 120 mm, and a depth-of-field (DOF) of 0.65 mm. We also demonstrate the performance of the AnCam in whole anal canal imaging in both animal models and real patients. In addition to this, the PanCam is based on a smartphone platform integrated with a panoramic annular lens (PAL), and can capture a FOV of 18 mm × 120 mm in a single shot with a resolution of 100─140 μm. In this work we demonstrate the PanCam’s performance in imaging a stained tissue sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complexity in the earthquake rupture process can result from many factors. This study investigates the origin of such complexity by examining several recent, large earthquakes in detail. In each case the local tectonic environment plays an important role in understanding the source of the complexity.

Several large shallow earthquakes (Ms > 7.0) along the Middle American Trench have similarities and differences between them that may lead to a better understanding of fracture and subduction processes. They are predominantly thrust events consistent with the known subduction of the Cocos plate beneath N. America. Two events occurring along this subduction zone close to triple junctions show considerable complexity. This may be attributable to a more heterogeneous stress environment in these regions and as such has implications for other subduction zone boundaries.

An event which looks complex but is actually rather simple is the 1978 Bermuda earthquake (Ms ~ 6). It is located predominantly in the mantle. Its mechanism is one of pure thrust faulting with a strike N 20°W and dip 42°NE. Its apparent complexity is caused by local crustal structure. This is an important event in terms of understanding and estimating seismic hazard on the eastern seaboard of N. America.

A study of several large strike-slip continental earthquakes identifies characteristics which are common to them and may be useful in determining what to expect from the next great earthquake on the San Andreas fault. The events are the 1976 Guatemala earthquake on the Motagua fault and two events on the Anatolian fault in Turkey (the 1967, Mudurnu Valley and 1976, E. Turkey events). An attempt to model the complex P-waveforms of these events results in good synthetic fits for the Guatemala and Mudurnu Valley events. However, the E. Turkey event proves to be too complex as it may have associated thrust or normal faulting. Several individual sources occurring at intervals of between 5 and 20 seconds characterize the Guatemala and Mudurnu Valley events. The maximum size of an individual source appears to be bounded at about 5 x 1026 dyne-cm. A detailed source study including directivity is performed on the Guatemala event. The source time history of the Mudurnu Valley event illustrates its significance in modeling strong ground motion in the near field. The complex source time series of the 1967 event produces amplitudes greater by a factor of 2.5 than a uniform model scaled to the same size for a station 20 km from the fault.

Three large and important earthquakes demonstrate an important type of complexity --- multiple-fault complexity. The first, the 1976 Philippine earthquake, an oblique thrust event, represents the first seismological evidence for a northeast dipping subduction zone beneath the island of Mindanao. A large event, following the mainshock by 12 hours, occurred outside the aftershock area and apparently resulted from motion on a subsidiary fault since the event had a strike-slip mechanism.

An aftershock of the great 1960 Chilean earthquake on June 6, 1960, proved to be an interesting discovery. It appears to be a large strike-slip event at the main rupture's southern boundary. It most likely occurred on the landward extension of the Chile Rise transform fault, in the subducting plate. The results for this event suggest that a small event triggered a series of slow events; the duration of the whole sequence being longer than 1 hour. This is indeed a "slow earthquake".

Perhaps one of the most complex of events is the recent Tangshan, China event. It began as a large strike-slip event. Within several seconds of the mainshock it may have triggered thrust faulting to the south of the epicenter. There is no doubt, however, that it triggered a large oblique normal event to the northeast, 15 hours after the mainshock. This event certainly contributed to the great loss of life-sustained as a result of the Tangshan earthquake sequence.

What has been learned from these studies has been applied to predict what one might expect from the next great earthquake on the San Andreas. The expectation from this study is that such an event would be a large complex event, not unlike, but perhaps larger than, the Guatemala or Mudurnu Valley events. That is to say, it will most likely consist of a series of individual events in sequence. It is also quite possible that the event could trigger associated faulting on neighboring fault systems such as those occurring in the Transverse Ranges. This has important bearing on the earthquake hazard estimation for the region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1) Equation of State of Komatiite

The equation of state (EOS) of a molten komatiite (27 wt% MgO) was detennined in the 5 to 36 GPa pressure range via shock wave compression from 1550°C and 0 bar. Shock wave velocity, US, and particle velocity, UP, in km/s follow the linear relationship US = 3.13(±0.03) + 1.47(±0.03) UP. Based on a calculated density at 1550°C, 0 bar of 2.745±0.005 glee, this US-UP relationship gives the isentropic bulk modulus KS = 27.0 ± 0.6 GPa, and its first and second isentropic pressure derivatives, K'S = 4.9 ± 0.1 and K"S = -0.109 ± 0.003 GPa-1.

The calculated liquidus compression curve agrees within error with the static compression results of Agee and Walker [1988a] to 6 GPa. We detennine that olivine (FO94) will be neutrally buoyant in komatiitic melt of the composition we studied near 8.2 GPa. Clinopyroxene would also be neutrally buoyant near this pressure. Liquidus garnet-majorite may be less dense than this komatiitic liquid in the 20-24 GPa interval, however pyropic-garnet and perovskite phases are denser than this komatiitic liquid in their respective liquidus pressure intervals to 36 GPa. Liquidus perovskite may be neutrally buoyant near 70 GPa.

At 40 GPa, the density of shock-compressed molten komatiite would be approximately equal to the calculated density of an equivalent mixture of dense solid oxide components. This observation supports the model of Rigden et al. [1989] for compressibilities of liquid oxide components. Using their theoretical EOS for liquid forsterite and fayalite, we calculate the densities of a spectrum of melts from basaltic through peridotitic that are related to the experimentally studied komatiitic liquid by addition or subtraction of olivine. At low pressure, olivine fractionation lowers the density of basic magmas, but above 14 GPa this trend is reversed. All of these basic to ultrabasic liquids are predicted to have similar densities at 14 GPa, and this density is approximately equal to the bulk (PREM) mantle. This suggests that melts derived from a peridotitic mantle may be inhibited from ascending from depths greater than 400 km.

The EOS of ultrabasic magmas was used to model adiabatic melting in a peridotitic mantle. If komatiites are formed by >15% partial melting of a peridotitic mantle, then komatiites generated by adiabatic melting come from source regions in the lower transition zone (≈500-670 km) or the lower mantle (>670 km). The great depth of incipient melting implied by this model, and the melt density constraint mentioned above, suggest that komatiitic volcanism may be gravitationally hindered. Although komatiitic magmas are thought to separate from their coexisting crystals at a temperature =200°C greater than that for modern MORBs, their ultimate sources are predicted to be diapirs that, if adiabatically decompressed from initially solid mantle, were more than 700°C hotter than the sources of MORBs and derived from great depth.

We considered the evolution of an initially molten mantle, i.e., a magma ocean. Our model considers the thermal structure of the magma ocean, density constraints on crystal segregation, and approximate phase relationships for a nominally chondritic mantle. Crystallization will begin at the core-mantle boundary. Perovskite buoyancy at > 70 GPa may lead to a compositionally stratified lower mantle with iron-enriched mangesiowiistite content increasing with depth. The upper mantle may be depleted in perovskite components. Olivine neutral buoyancy may lead to the formation of a dunite septum in the upper mantle, partitioning the ocean into upper and lower reservoirs, but this septum must be permeable.

(2) Viscosity Measurement with Shock Waves

We have examined in detail the analytical method for measuring shear viscosity from the decay of perturbations on a corrugated shock front The relevance of initial conditions, finite shock amplitude, bulk viscosity, and the sensitivity of the measurements to the shock boundary conditions are discussed. The validity of the viscous perturbation approach is examined by numerically solving the second-order Navier-Stokes equations. These numerical experiments indicate that shock instabilities may occur even when the Kontorovich-D'yakov stability criteria are satisfied. The experimental results for water at 15 GPa are discussed, and it is suggested that the large effective viscosity determined by this method may reflect the existence of ice VII on the Rayleigh path of the Hugoniot This interpretation reconciles the experimental results with estimates and measurements obtained by other means, and is consistent with the relationship of the Hugoniot with the phase diagram for water. Sound waves are generated at 4.8 MHz at in the water experiments at 15 GPa. The existence of anelastic absorption modes near this frequency would also lead to large effective viscosity estimates.

(3) Equation of State of Molybdenum at 1400°C

Shock compression data to 96 GPa for pure molybdenum, initially heated to 1400°C, are presented. Finite strain analysis of the data gives a bulk modulus at 1400°C, K'S. of 244±2 GPa and its pressure derivative, K'OS of 4. A fit of shock velocity to particle velocity gives the coefficients of US = CO+S UP to be CO = 4.77±0.06 km/s and S = 1.43±0.05. From the zero pressure sound speed, CO, a bulk modulus of 232±6 GPa is calculated that is consistent with extrapolation of ultrasonic elasticity measurements. The temperature derivative of the bulk modulus at zero pressure, θKOSθT|P, is approximately -0.012 GPa/K. A thermodynamic model is used to show that the thermodynamic Grüneisen parameter is proportional to the density and independent of temperature. The Mie-Grüneisen equation of state adequately describes the high temperature behavior of molybdenum under the present range of shock loading conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microscopic properties of a two-dimensional model dense fluid of Lennard-Jones disks have been studied using the so-called "molecular dynamics" method. Analyses of the computer-generated simulation data in terms of "conventional" thermodynamic and distribution functions verify the physical validity of the model and the simulation technique.

The radial distribution functions g(r) computed from the simulation data exhibit several subsidiary features rather similar to those appearing in some of the g(r) functions obtained by X-ray and thermal neutron diffraction measurements on real simple liquids. In the case of the model fluid, these "anomalous" features are thought to reflect the existence of two or more alternative configurations for local ordering.

Graphical display techniques have been used extensively to provide some intuitive insight into the various microscopic phenomena occurring in the model. For example, "snapshots" of the instantaneous system configurations for different times show that the "excess" area allotted to the fluid is collected into relatively large, irregular, and surprisingly persistent "holes". Plots of the particle trajectories over intervals of 2.0 to 6.0 x 10-12 sec indicate that the mechanism for diffusion in the dense model fluid is "cooperative" in nature, and that extensive diffusive migration is generally restricted to groups of particles in the vicinity of a hole.

A quantitative analysis of diffusion in the model fluid shows that the cooperative mechanism is not inconsistent with the statistical predictions of existing theories of singlet, or self-diffusion in liquids. The relative diffusion of proximate particles is, however, found to be retarded by short-range dynamic correlations associated with the cooperative mechanism--a result of some importance from the standpoint of bimolecular reaction kinetics in solution.

A new, semi-empirical treatment for relative diffusion in liquids is developed, and is shown to reproduce the relative diffusion phenomena observed in the model fluid quite accurately. When incorporated into the standard Smoluchowski theory of diffusion-controlled reaction kinetics, the more exact treatment of relative diffusion is found to lower the predicted rate of reaction appreciably.

Finally, an entirely new approach to an understanding of the liquid state is suggested. Our experience in dealing with the simulation data--and especially, graphical displays of the simulation data--has led us to conclude that many of the more frustrating scientific problems involving the liquid state would be simplified considerably, were it possible to describe the microscopic structures characteristic of liquids in a concise and precise manner. To this end, we propose that the development of a formal language of partially-ordered structures be investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

̄pp backward elastic scattering has been measured for the cos θcm region between – 1.00 and – 0.88 and for the incident ̄p laboratory momentum region between 0.70 and 2.37 GeV/c. These measurements, done in intervals of approximately 0.1 GeV/c, have been performed at the Alternating Gradient Synchrotron at Brookhaven National Laboratory during the winter of 1968. The measured differential cross sections, binned in cos θcm intervals of 0.02, have statistical errors of about 10%. Backward dipping exists below 0.95 GeV/c and backward peaking above 0.95 GeV/c. The 180˚ differential cross section extrapolated from our data shows a sharp dip centered at 0.95 GeV/c and a broad hump centered near 1.4 GeV/c. Our data have been interpreted in terms of resonance effects and in terms of diffraction dominance effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental method combined with boundary layer theory is given for evaluating the added mass of a sphere moving along the axis of a circular cylinder filled with water or oil. The real fluid effects are separated from ideal fluid effects.

The experimental method consists essentially of a magnetic steel sphere propelled from rest by an electromagnetic coil in which the current is accurately controlled so that it only supplies force for a short time interval which is within the laminar flow regime of the fluid. The motion of the sphere as a function of time is recorded on single frame photographs using a short-arc multiple flash lamp with accurately controlled time intervals between flashes.

A concept of the effect of boundary layer displacement on the fluid flow around a sphere is introduced to evaluate the real fluid effects on the added mass. Surprisingly accurate agreement between experiment and theory is achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number

dC(E) = sup(β:Hβ, C(E) > 0),

where Hβ, C is the outer measure

inf(Ʃm(Ci)β:UCi E, Ci ϵ C) .

Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:

Inf(Ʃ(diam. (Ci))β: UCi E, Ci ϵ C),

for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).

If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),

dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)

where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that

dC(E) = sup (dC(μ):μ ϵ M(E)).

This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,

(*) {dB(F), dC(f)): f ϵ Ӻ}

is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.

In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula

dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C

where

∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).

A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bacteriophage (TØ3) which infects the thermophilic bacterium Bacillus stearothermophilus ATCC 8005 was isolated and characterized. Infection of the bacterium by the bacteriophage was carried out at 60°C, the optimum growth temperature of the host. At 60°C the phage has a latent period of 18 minutes and a burst size of about 200. The phage is comparatively thermostable in broth. The half life of the phage is 400 minutes at 60°C, 120 minutes at 65°C, 40 minutes at 70°C and 12 minutes at 75°C. The activation energy for the heat inactivation of TØ3 is 56,000 cal. The buoyant density of TØ3 in a cesium chloride density gradient is 1.526.

Electron micrographs of TØ3 indicate that the phage has a regular hexagonal shaped head 57 mμ long. The morphology of the head is compatible with icosahedral symmetry. Each edge of the head is 29 mμ long, and there are 6 or 7 subunits along each edge. The tail of TØ3 is 125 mμ long and 10 mμ wide. There are about 30 cross striations that are spaced at 3.9 mμ intervals along the tail.

The DNA of phage TØ3 has a melting temperature of 88.5°C. Heat denatured TØ3 DNA can be extensively annealed in a high ionic strength environment. The buoyant density of TØ3 DNA in a cesium chloride density gradient is 1.695. TØ3 DNA contains: 42.7% guanine plus cytosine, as determined from the melting temperature; 43% guanine plus cytosine, as determined from the buoyant density; and 40.2% guanine plus cytosine, as determined by chromatographic separation and spectrophotometric estimation of the bases. The molecular weight of TØ3 DNA is 16.7 X 106 as determined from the band width of the TØ3 DNA concentration distribution in a cesium chloride density gradient. Electron microscopy of TØ3 DNA revealed a single linear molecule that is 11.7 μ long. This corresponds to a molecular weight of 22.5 X 106.

Heat denatured TØ3 DNA forms two bands in a cesium chloride density gradient, one at a density of 1.707 and the other at a density of 1.715. After the separated bands are mixed and annealed in the centrifuge cell, the renatured TØ3 DNA forms a single band at a density of 1.699. These results indicate that the two complementary strands of TØ3 DNA have different buoyant densities in cesium chloride, presumably because they have different base compositions.

The characteristics of TØ3 are compared with those of other phages. A hypothesis is presented for a relationship between the base composition of one strand of TØ3 DNA and the amino acid composition of the proteins of TØ3.