988 resultados para INSITU FT-IRAS
Resumo:
The reactions of both thiophene and H2S onMo(2)C/Al2O3 catalyst have been studied by in situ FT-IR spectroscopy. CO adsorption was used to probe the surface sites of Mo2C/Al2O3 catalyst under the interaction and reaction of thiophene and H2S. When the fresh Mo2C/Al2O3 catalyst is treated with a thiophene/H-2 mixture above 473 K, hydrogenated species exhibiting IR bands in the regions 2800-3000 cm(-1) are produced on the surface, indicating that thiophene reacts with the fresh carbide catalyst at relatively low temperatures. IR spectra of adsorbed CO on fresh Mo2C/Al2O3 pretreated by thiophene/H-2 at different temperatures clearly reveal the gradual sulfidation of the carbide catalyst at temperatures higher than 473 K, while H2S/H-2 can sulfide the Mo2C/Al2O3 catalyst surface readily at room temperature (RT). The sulfidation of the carbide surface by the reaction with thiophene or H2S maybe the major cause of the deactivation of carbide catalysts in hydrotreating reactions. The surface of the sulfided carbide catalyst can be only partially regenerated by a recarburization using CH4/H-2 at 1033 K. When the catalyst is first oxidized and then recarburized, the carbide surface can be completely reproduced.
Resumo:
The surface sites of supported molybdenum carbide catalyst derived from different synthesis stages have been studied by in situ FT-IR spectroscopy using CO as the probe molecule. Adsorbed CO on the reduced passivated Mo2C/Al2O3 catalyst gives a main band at 2180 cm(-1), which can be assigned to linearly adsorbed CO on Mo4+ sites. The IR results show that the surface of reduced passivated sample is dominated by molybdenum oxycarbide. However, a characteristic IR band at 2054 cm-1 was observed for the adsorbed CO on MoO3/Al2O3 carburized with CH4/H-2 mixture at 1033 K (fresh Mo2C/Al2O3), which can be assigned to linearly adsorbed CO on Modelta+ (0 < delta < 2) sites Of Mo2C/Al2O3, Unlike adsorbed CO on reduced passivated Mo2C/Al2O3 catalyst, the IR spectra of adsorbed CO on fresh Mo2C/Al2O3 shows similarity to that on some of the group VIII metals (such as Pt and Pd), suggesting that fresh carbide resembles noble metals. To study the stability Of Mo2C catalyst during H-2 treatment and find proper conditions to remove the deposited carbon species, H-2 treatment of fresh Mo2C/Al2O3 catalyst at different temperatures was conducted. Partial amounts of carbon atoms in Mo2C along with some surface-deposited carbon species can be removed by the H, treatment even at 450 K. Both the surface-deposited carbon species and carbon atoms in carbide can be extensively removed at temperatures above 873 K.
Resumo:
This study sought to determine the main components (saccharides and phenolic acids) in crude extract of the Chinese herb Tanshen by electrospray ionization Fourier transform ion cyclotron resonant mass spectrometry (ESI-FT-ICR-MS) in negative-ion mode. Eleven compounds were identified as phenolic acids by exact mass measurement and further confirmed by sustained off-resonance irradiation (SORI) CID data. In addition, monosaccharicles and oligosaccharides (n = 2 similar to 5) and a serial of corresponding anionic adducts of saccharide were observed without adding any anions additionally to the extract solution, and the anionic components were unambiguously identified as H2O, HCl, HCOOH, HNO3, C3H6O2, H2SO4 and C5H7NO3 according to the exact mass measurement results.
Resumo:
Seven compounds, four flavones and three triterpenoids from Glycyrrhiza uralensis Fisch. extract are identified by high performance liquid chromatography coupled with electrospray ionization multi-tandem mass spectrometry (HPLC-ESI-MSn). The fragmentation pathways of these compounds are investigated by ESI-MSn and Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (FT-ICR-MSn). Comparing the retention times (t(R)) and mass spectra with those of reference compounds, seven components are identified in Glycyrrhiza uralensis Fisch. and their MSn data proposed plausible schemes for their fragmentation. All the experimental results show that ESI-MSn and FT-ICR-MSn are powerful tools for the structural characterization of triterpenoids and flavones