997 resultados para Homeobox Gene Shox
Resumo:
The molecular mechanisms that regulate the transcription of key developmental genes involved in shoot organogenesis have yet to be fully elucidated. However, it is clear that plant growth regulators, such as cytokinin, play a critical role in the differentiation of adventitious shoots. In Nicotiana tabacum zz100 leaf discs, high frequency shoot formation could be induced with 5 muM of the cytokinin N-6-benzyladenine (BA). Increasing the exogenous BA concentration to greater than 20 muM resulted in stunted explants with abnormal shoot morphology and altered mineral composition. Explants with abnormal shoots did not appear to be hyperhydric. Abnormalities were, however, associated with an increase in the expression of a knotted1-type homeobox gene (TobH1) isolated from normal shoot-forming cultures. The results suggest that the development of cytokinin-induced abnormal shoot morphology possibly involves changes in TobH1 gene expression.
Resumo:
Abnormalities in the growth plate may lead to short stature and skeletal deformity including Leri Weil syndrome, which has been shown to result from deletions or mutations in the SHOX gene, a homeobox gene located at the pseudoautosomal region of the X and Y chromosome. We studied the expression of SHOX protein, by immunohistochemistry, in human fetal and childhood growth plates and mRNA by in situ hybridization in childhood normal and Leri Weil growth plate. SHOX protein was found in reserve, proliferative, and hypertrophic zones of fetal growth plate from 12 wk to term and childhood control and Leri Weil growth plates. The pattern of immunostaining in the proliferative zone of childhood growth plate was patchy, with more intense uniform immunostaining in the hypertrophic zone. In situ hybridization studies of childhood growth plate demonstrated SHOX mRNA expression throughout the growth plate. No difference in the pattern of SHOX protein or mRNA expression was seen between the control and Leri Weil growth plate. These findings suggest that SHOX plays a role in chondrocyte function in the growth plate.
Resumo:
SHOX haploinsufficiency causes a wide spectrum of short stature phenotypes, such as Leri-Weill dyschondrosteosis (LWD) and disproportionate short stature (DSS). SHOX deletions are responsible for approximately two thirds of isolated haploinsufficiency; therefore, it is important to determine the most appropriate methodology for detection of gene deletion. In this study, three methodologies for the detection of SHOX deletions were compared: the fluorescence in situ hybridization (FISH), microsatellite analysis and multiplex ligation-dependent probe amplification (MLPA). Forty-four patients (8 LWD and 36 DSS) were analyzed. The cosmid LLNOYCO3`M`34F5 was used as a probe for the FISH analysis and microsatellite analysis were performed using three intragenic microsatellite markers. MLPA was performed using commercial kits. Twelve patients (8 LWD and 4 DSS) had deletions in SHOX area detected by MLPA and 2 patients generated discordant results with the other methodologies. In the first case, the deletion was not detected by FISH. In the second case, both FISH and microsatellite analyses were unable to identify the intragenic deletion. In conclusion, MLPA was more sensitive, less expensive and less laborious; therefore, it should be used as the initial molecular method for the detection of SHOX gene deletion. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Aims: To analyse the expression of three homeobox genes (HOXA7, PITX1 and PRRX1) in oral squanous cell carcinomas (OSCC) and the relationship of such expression to certain distinct histopathological features of OSCC and in comparison to adjacent non-neoplastic epithelium (NT). Methods and results: Digoxigenin-labelled riboprobes that are specific for each homeobox gene were generated and in situ hybridization was carried out on frozen sections. In NT samples, HOXA7 and PITX1 transcripts were found more frequently in all epithelial layers, while PRRX1 was expressed in the basal layer. With OSCC samples, expression of the three genes was associated with all histological features. However, the HOXA7 and PITX1 signals were more intense in sheets and nests and PRRX1 in small nests and isolated cells. Conclusion: HOXA7, PIXT1 and PRRX1 homeobox genes have different patterns of expression in OSCC depending on its histological features.
Resumo:
BACKGROUND: The evolutionary lineage leading to the teleost fish underwent a whole genome duplication termed FSGD or 3R in addition to two prior genome duplications that took place earlier during vertebrate evolution (termed 1R and 2R). Resulting from the FSGD, additional copies of genes are present in fish, compared to tetrapods whose lineage did not experience the 3R genome duplication. Interestingly, we find that ParaHox genes do not differ in number in extant teleost fishes despite their additional genome duplication from the genomic situation in mammals, but they are distributed over twice as many paralogous regions in fish genomes. RESULTS: We determined the DNA sequence of the entire ParaHox C1 paralogon in the East African cichlid fish Astatotilapia burtoni, and compared it to orthologous regions in other vertebrate genomes as well as to the paralogous vertebrate ParaHox D paralogons. Evolutionary relationships among genes from these four chromosomal regions were studied with several phylogenetic algorithms. We provide evidence that the genes of the ParaHox C paralogous cluster are duplicated in teleosts, just as it had been shown previously for the D paralogon genes. Overall, however, synteny and cluster integrity seems to be less conserved in ParaHox gene clusters than in Hox gene clusters. Comparative analyses of non-coding sequences uncovered conserved, possibly co-regulatory elements, which are likely to contain promoter motives of the genes belonging to the ParaHox paralogons. CONCLUSION: There seems to be strong stabilizing selection for gene order as well as gene orientation in the ParaHox C paralogon, since with a few exceptions, only the lengths of the introns and intergenic regions differ between the distantly related species examined. The high degree of evolutionary conservation of this gene cluster's architecture in particular - but possibly clusters of genes more generally - might be linked to the presence of promoter, enhancer or inhibitor motifs that serve to regulate more than just one gene. Therefore, deletions, inversions or relocations of individual genes could destroy the regulation of the clustered genes in this region. The existence of such a regulation network might explain the evolutionary conservation of gene order and orientation over the course of hundreds of millions of years of vertebrate evolution. Another possible explanation for the highly conserved gene order might be the existence of a regulator not located immediately next to its corresponding gene but further away since a relocation or inversion would possibly interrupt this interaction. Different ParaHox clusters were found to have experienced differential gene loss in teleosts. Yet the complete set of these homeobox genes was maintained, albeit distributed over almost twice the number of chromosomes. Selection due to dosage effects and/or stoichiometric disturbance might act more strongly to maintain a modal number of homeobox genes (and possibly transcription factors more generally) per genome, yet permit the accumulation of other (non regulatory) genes associated with these homeobox gene clusters.
Resumo:
Background: Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes.Results: We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenariothat reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to aProtoHox cluster was involved in a segmental tandem duplication event that generated an arrayof all Hox-like genes, referred to as the `coupled¿ cluster. A chromosomal breakage within thiscluster explains the current composition of the extended Hox cluster (with Evx, Hox and Moxgenes) and the ParaHox cluster.Conclusions: Most studies dealing with the origin and evolution of Hox and ParaHox clustershave not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and theavailable linkage data in mammalian genomes support an evolutionary scenario in which anancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of alarge genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plusthe cluster-neighbors Evx and Mox. The large `coupled¿ Hox-like cluster EvxHox/MoxParaHox wassubsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating theParaHox cluster.
Resumo:
Nonsyndromic oral clefts (NSOC) are the most common craniofacial birth defects in humans. The etiology of NSOC is complex, involving both genetic and environmental factors. Several genes that play a role in cellular proliferation, differentiation, and apoptosis have been associated with clefting. For example, variations in the homeobox gene family member MSX1, including a CA repeat located within its single intron, may play a role in clefting. The aim of this study was to investigate the association between MSX1CA repeat polymorphism and NSOC in a Southern Brazilian population using a case-parent triad design. We studied 182 nuclear families with NSOC recruited from the Hospital de Clínicas de Porto Alegre in Southern Brazil. The polymorphic region was amplified by the polymerase chain reaction and analyzed by using an automated sequencer. Among the 182 families studied, four different alleles were observed, at frequencies of 0.057 (175 bp), 0.169 (173 bp), 0.096 (171 bp) and 0.67 (169 bp). A transmission disequilibrium test with a family-based association test (FBAT) software program was used for analysis. FBAT analysis showed overtransmission of the 169 bp allele in NSOC (P=0.0005). These results suggest that the CA repeat polymorphism of theMSX1 gene may play a role in risk of NSOC in populations from Southern Brazil.
Resumo:
Homeobox genes encode DNA-binding proteins, many of which are implicated in the control of embryonic development. Evolutionarily, most homeobox genes fall into two related clades: the ANTP and the PRD classes. Some genes in ANTP class, notably Hox, ParaHox, and NK genes, have an intriguing arrangement into physical clusters. To investigate the evolutionary history of these gene clusters, we examined homeobox gene chromosomal locations in the cephalochordate amphioxus, Branchiostoma floridae. We deduce that 22 amphioxus ANTP class homeobox genes localize in just three chromosomes. One contains the Hox cluster plus AmphiEn, AmphiMnx, and AmphiDll. The ParaHox cluster resides in another chromosome, whereas a third chromosome contains the NK type homeobox genes, including AmphiMsx and ArnphiTlx. By comparative analysis we infer that clustering of ANTP class homeobox genes evolved just once, during a series of extensive cis-duplication events of genes early in animal evolution. A trans-duplication event occurred later to yield the Hox and ParaHox gene clusters on different chromosomes. The results obtained have implications for understanding the origin of homeobox gene clustering, the diversification of the ANTP class of homeobox genes, and the evolution of animal genomes.
Resumo:
PAX6, a member of the paired-type homeobox gene family, is expressed in a partially and temporally restricted pattern in the developing central nervous system, and its mutation is responsible for human aniridia (AN) and mouse small eye (Sey). The objective of this study was to characterize the PAX6 gene regulation at the transcriptional level, and thereby gain a better understanding of the molecular basis of the dynamic expression pattern and the diversified function of the human PAX6 gene.^ Initially, we examined the transcriptional regulation of the PAX6 gene by transient transfection assays and identified multiple cis-regulatory elements that function differently in different cell lines. The transcriptional initiation site was identified by RNase protection and primer extension assays. Examination of the genomic DNA sequence indicated that the PAX6 promoter has a TATA like-box (ATATTTT) at $-$26 bp, and two CCAAT-boxes are located at positions $-$70 and $-$100 bp. A 38 bp ply (CA) sequence was located 992 bp upstream from the initiation site. Transient transfection assays in glioblastoma cells and leukemia cells indicate that a 92 bp region was required for basal level PAX6 promoter activity. Gel retardation assays showed that this 92 bp sequence can form four DNA-protein complexes which can be specifically competed by a 31-mer oligonucleotide containing a PAX6 TATA-like sequence or an adenovirus TATA box. The activation of the promoter is positively correlated with the expression of PAX6 transcripts in cells tested.^ Based on the results obtained from the in vitro transfection assays, we did further dissection assay and functional analysis in both cell-culture and transgenic mice. We found that a 5 kb upstream promoter sequence is required for the tissue specific expression in the forebrain region which is consistent with that of the endogenous PAX6 gene. A 267 bp cell-type specific repressor located within the 5 kb fragment was identified and shown to direct forebrain specific expression. The cell-type specific repressor element has been narrowed to a 30 bp region which contains a consensus E-box by in vitro transfection assays. The third regulatory element identified was contained in a 162 bp sequence (+167 to +328) which functions as a midbrain repressor, and it appeared to be required for establishing the normal expression pattern of the PAX6 gene. Finally, a highly conserved 216 bp sequence identified in intron 4 exhibited as a spinal cord specific enhancer. And this 216 bp cis-regulatory element can be used as a marker to trace the differentiation and migration of progenitor cells in the developing spinal cord. These studies show that the concerted action of multiple cis-acting regulatory elements located upstream and downstream of the transcription initiation site determines the tissue specific expression of PAX6 gene. ^
Resumo:
Germ cell development is a highly coordinated process driven, in part, by regulatory mechanisms that control gene expression. Not only transcription, but also translation, is under regulatory control to direct proper germ cell development. In this dissertation, I have focused on two regulators of germ cell development. One is the homeobox protein RHOX10, which has the potential to be both a transcriptional and translational regulator in mouse male germ cell development. The other is the RNA-binding protein, Hermes, which functions as a translational regulator in Xenopus laevis female germ cell development. ^ Rhox10 is a member of reproductive homeobox gene X-(linked (Rhox) gene cluster, of which expression is developmentally regulated in developing mouse testes. To identify the cell types and developmental stages in which Rhox10 might function, I characterized its temporal and spatial expression pattern in mouse embryonic, neonatal, and adult tissues. Among other things, this analysis revealed that both the level and the subcellular localization of RHOX10 are regulated during germ cell development. To understand the role of Rhox10 in germ cell development, I generated transgenic mice expressing an artificial microRNA (miRNA) targeting Rhox10. While this artificial miRNA robustly downregulated RHOX10 protein expression in vitro, it did not significantly reduce RHOX10 expression in vivo. So I next elected to knockdown RHOX10 levels in spermatogonial stem cells (SSCs), which I found highly express both Rhox10 mRNA and RHOX10 protein. Using a recently developed in vitro culture system for SSCs combined with a short-hairpin RNA (shRNA) approach, I strongly depleted RHOX10 expression in SSCs. These RHOX10-depleted cells exhibited a defect in the ability to form stem cell clusters in vitro. Expression profiling analysis revealed many genes regulated by Rhox10, including many meiotic genes, which could be downstream of Rhox10 in a molecular pathway that controls SSC differentiation. ^ RNA recognition motif (RRM) containing protein, Hermes is localized in germ plasm, where dormant mRNAs are also located, of Xenopus oocytes, which implicates its role in translational regulator. To understand the function of Hermes in oocyte meiosis, I used a morpholino oligonucleotide (MO) based knockdown approach. Microinjection of Hermes MO into fully grown oocytes, which are arrested in meiotic prophase, caused acceleration of oocytes reentry into meiosis (i.e., maturation) upon progesterone induction. Using a candidate approach, I identified at least three targets of Hermes: Ringo/Spy, Xcat2, and Mos. Ringo/Spy and Mos are known to have functions in oocyte maturation, while Ringo/Spy, Xcat2 mRNA are localized in the germ plasm of oocytes, which drives germ cell specification after fertilization. This led me to propose that Hermes functions in both oocyte maturation and germ cell development through its ability to regulate 3 crucial target mRNAs. ^
Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression
Resumo:
The normal expression pattern of the Wnt responsive homeobox gene Siamois is restricted to the dorso-vegetal region of the Xenopus embryo. Because the Wnt signaling pathway (via β-catenin) is active on the entire dorsal side of the early embryo, we have asked why Siamois expression is not seen in the dorsal ectoderm. Only Wnt signaling, via activation of β-catenin, can induce directly Siamois, and signaling via the SMAD1 (BMP2/4) or SMAD2 (activin/Vg-1) pathways cannot. We now directly show that the SMAD2 pathway can cooperate with the Wnt pathway to induce expression of Siamois much more strongly than the Wnt pathway alone, in normal embryos. We demonstrate the significance of this cooperation in normal embryos by blocking the SMAD2 signaling pathway with a dominant negative activin receptor. The activin dominant negative receptor blocks this cooperative effect and reduces the expression of Siamois by threefold in early embryos. Furthermore, we find that this cooperative relationship between the SMAD2 and Wnt pathways is reciprocal. Thus, in normal embryos, the Wnt pathway can enhance induction, by the SMAD 2 pathway, of the organizer genes Gsc and Chd but not the pan-mesodermal marker genes Xbra and Eomes. We conclude that the Wnt and SMAD2 signaling pathways cooperate to induce the expression of Spemann-organizer specific genes and so help to localize their spatial expression.
A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons
Resumo:
The mesencephalic dopaminergic (mesDA) system regulates behavior and movement control and has been implicated in psychiatric and affective disorders. We have identified a bicoid-related homeobox gene, Ptx3, a member of the Ptx-subfamily, that is uniquely expressed in these neurons. Its expression starting at E11.5 in the developing mouse midbrain correlates with the appearance of mesDA neurons. The number of Ptx3-expressing neurons is reduced in Parkinson patients, and these neurons are absent from 6-hydroxy-dopamine-lesioned rats, an animal model for this disease. Thus, Ptx3 is a unique transcription factor marking the mesDA neurons at the exclusion of other dopaminergic neurons, and it may be involved in developmental determination of this neuronal lineage.
Resumo:
Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH2 terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.
Resumo:
We previously reported that overexpression of the rice homeobox gene OSH1 led to altered morphology and hormone levels in transgenic tobacco (Nicotiana tabacum L.) plants. Among the hormones whose levels were changed, GA1 was dramatically reduced. Here we report the results of our analysis on the regulatory mechanism(s) of OSH1 on GA metabolism. GA53 and GA20, precursors of GA1, were applied separately to transgenic tobacco plants exhibiting severely changed morphology due to overexpression of OSH1. Only treatment with the end product of GA 20-oxidase, GA20, resulted in a striking promotion of stem elongation in transgenic tobacco plants. The internal GA1 and GA20 contents in OSH1-transformed tobacco were dramatically reduced compared with those of wild-type plants, whereas the level of GA19, a mid-product of GA 20-oxidase, was 25% of the wild-type level. We have isolated a cDNA encoding a putative tobacco GA 20-oxidase, which is mainly expressed in vegetative stem tissue. RNA-blot analysis revealed that GA 20-oxidase gene expression was suppressed in stem tissue of OSH1-transformed tobacco plants. Based on these results, we conclude that overexpression of OSH1 causes a reduction of the level of GA1 by suppressing GA 20-oxidase expression.
Resumo:
During development of the vertebrate nervous system, the neural cell adhesion molecule (N-CAM) is expressed in a defined spatiotemporal pattern. We have proposed that the expression of N-CAM is controlled, in part, by proteins encoded by homeobox genes. This hypothesis has been supported by previous in vitro experiments showing that products of homeobox genes can both bind to and transactivate the N-CAM promoter via two homeodomain binding sites, HBS-I and HBS-II. We have now tested the hypothesis that the N-CAM gene is a target of homeodomain proteins in vivo by using transgenic mice containing native and mutated N-CAM promoter constructs linked to a beta-galactosidase reporter gene. Segments of the 5' flanking region of the mouse N-CAM gene were sufficient to direct expression of the reporter gene in the central nervous system in a pattern consistent with that of the endogenous N-CAM gene. For example, at embryonic day (E) 11, beta-galactosidase staining was found in postmitotic neurons in dorsolateral and ventrolateral regions of the spinal cord; at E14.5, staining was seen in these neurons throughout the spinal cord. In contrast, mice carrying an N-CAM promoter-reporter construct with mutations in both homeodomain binding sites (HBS-I and HBS-II) showed altered expression patterns in the spinal cord. At E11, beta-galactosidase expression was seen in the ventrolateral spinal cord, but was absent in the dorsolateral areas, and at E 14.5, beta-galactosidase expression was no longer detected in any cells of the cord. Homeodomain binding sites found in the N-CAM promoter thus appear to be important in determining specific expression patterns of N-CAM along the dorsoventral axis in the developing spinal cord. These experiments suggest that the N-CAM gene is an in vivo target of homeobox gene products in vertebrates.