910 resultados para Higher-order aberrations
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
The depth of focus (DOF) can be defined as the variation in image distance of a lens or an optical system which can be tolerated without incurring an objectionable lack of sharpness of focus. The DOF of the human eye serves a mechanism of blur tolerance. As long as the target image remains within the depth of focus in the image space, the eye will still perceive the image as being clear. A large DOF is especially important for presbyopic patients with partial or complete loss of accommodation (presbyopia), since this helps them to obtain an acceptable retinal image when viewing a target moving through a range of near to intermediate distances. The aim of this research was to investigate the DOF of the human eye and its association with the natural wavefront aberrations, and how higher order aberrations (HOAs) can be used to expand the DOF, in particular by inducing spherical aberrations ( 0 4 Z and 0 6 Z ). The depth of focus of the human eye can be measured using a variety of subjective and objective methods. Subjective measurements based on a Badal optical system have been widely adopted, through which the retinal image size can be kept constant. In such measurements, the subject.s tested eye is normally cyclopleged. Objective methods without the need of cycloplegia are also used, where the eye.s accommodative response is continuously monitored. Generally, the DOF measured by subjective methods are slightly larger than those measured objectively. In recent years, methods have also been developed to estimate DOF from retinal image quality metrics (IQMs) derived from the ocular wavefront aberrations. In such methods, the DOF is defined as the range of defocus error that degrades the retinal image quality calculated from the IQMs to a certain level of the possible maximum value. In this study, the effect of different amounts of HOAs on the DOF was theoretically evaluated by modelling and comparing the DOF of subjects from four different clinical groups, including young emmetropes (20 subjects), young myopes (19 subjects), presbyopes (32 subjects) and keratoconics (35 subjects). A novel IQM-based through-focus algorithm was developed to theoretically predict the DOF of subjects with their natural HOAs. Additional primary spherical aberration ( 0 4 Z ) was also induced in the wavefronts of myopes and presbyopes to simulate the effect of myopic refractive correction (e.g. LASIK) and presbyopic correction (e.g. progressive power IOL) on the subject.s DOF. Larger amounts of HOAs were found to lead to greater values of predicted DOF. The introduction of primary spherical aberration was found to provide moderate increase of DOF while slightly deteriorating the image quality at the same time. The predicted DOF was also affected by the IQMs and the threshold level adopted. We then investigated the influence of the chosen threshold level of the IQMs on the predicted DOF, and how it relates to the subjectively measured DOF. The subjective DOF was measured in a group of 17 normal subjects, and we used through-focus visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM to estimate the DOF. The results allowed comparison of the subjective DOF with the estimated DOF and determination of a threshold level for DOF estimation. Significant correlation was found between the subject.s estimated threshold level for the estimated DOF and HOA RMS (Pearson.s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual.s DOF from a single measurement of their wavefront aberrations. A subsequent study was conducted to investigate the DOF of keratoconic subjects. Significant increases of the level of HOAs, including spherical aberration, coma and trefoil, can be observed in keratoconic eyes. This population of subjects provides an opportunity to study the influence of these HOAs on DOF. It was also expected that the asymmetric aberrations (coma and trefoil) in the keratoconic eye could interact with defocus to cause regional blur of the target. A dual-Badal-channel optical system with a star-pattern target was used to measure the subjective DOF in 10 keratoconic eyes and compared to those from a group of 10 normal subjects. The DOF measured in keratoconic eyes was significantly larger than that in normal eyes. However there was not a strong correlation between the large amount of HOA RMS and DOF in keratoconic eyes. Among all HOA terms, spherical aberration was found to be the only HOA that helped to significantly increase the DOF in the studied keratoconic subjects. Through the first three studies, a comprehensive understanding of DOF and its association to the HOAs in the human eye had been achieved. An adaptive optics system was then designed and constructed. The system was capable of measuring and altering the wavefront aberrations in the subject.s eye and measuring the resulting DOF under the influence of different combination of HOAs. Using the AO system, we investigated the concept of extending the DOF through optimized combinations of 0 4 Z and 0 6 Z . Systematic introduction of a targeted amount of both 0 4 Z and 0 6 Z was found to significantly improve the DOF of healthy subjects. The use of wavefront combinations of 0 4 Z and 0 6 Z with opposite signs can further expand the DOF, rather than using 0 4 Z or 0 6 Z alone. The optimal wavefront combinations to expand the DOF were estimated using the ratio of increase in DOF and loss of retinal image quality defined by VSOTF. In the experiment, the optimal combinations of 0 4 Z and 0 6 Z were found to provide a better balance of DOF expansion and relatively smaller decreases in VA. Therefore, the optimal combinations of 0 4 Z and 0 6 Z provides a more efficient method to expand the DOF rather than 0 4 Z or 0 6 Z alone. This PhD research has shown that there is a positive correlation between the DOF and the eye.s wavefront aberrations. More aberrated eyes generally have a larger DOF. The association of DOF and the natural HOAs in normal subjects can be quantified, which allows the estimation of DOF directly from the ocular wavefront aberration. Among the Zernike HOA terms, spherical aberrations ( 0 4 Z and 0 6 Z ) were found to improve the DOF. Certain combinations of 0 4 Z and 0 6 Z provide a more effective method to expand DOF than using 0 4 Z or 0 6 Z alone, and this could be useful in the optimal design of presbyopic optical corrections such as multifocal contact lenses, intraocular lenses and laser corneal surgeries.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.
Resumo:
Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
An approach to pattern recognition using invariant parameters based on higher-order spectra is presented. In particular, bispectral invariants are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale- and amplification-invariant. A minimal set of these invariants is selected as the feature vector for pattern classification. Pattern recognition using higher-order spectral invariants is fast, suited for parallel implementation, and works for signals corrupted by Gaussian noise. The classification technique is shown to distinguish two similar but different bolts given their one-dimensional profiles
Resumo:
A general procedure to determine the principal domain (i.e., nonredundant region of computation) of any higher-order spectrum is presented, using the bispectrum as an example. The procedure is then applied to derive the principal domain of the trispectrum of a real-valued, stationary time series. These results are easily extended to compute the principal domains of other higher-order spectra
Resumo:
A new approach to recognition of images using invariant features based on higher-order spectra is presented. Higher-order spectra are translation invariant because translation produces linear phase shifts which cancel. Scale and amplification invariance are satisfied by the phase of the integral of a higher-order spectrum along a radial line in higher-order frequency space because the contour of integration maps onto itself and both the real and imaginary parts are affected equally by the transformation. Rotation invariance is introduced by deriving invariants from the Radon transform of the image and using the cyclic-shift invariance property of the discrete Fourier transform magnitude. Results on synthetic and actual images show isolated, compact clusters in feature space and high classification accuracies
Resumo:
A new approach to pattern recognition using invariant parameters based on higher order spectra is presented. In particular, invariant parameters derived from the bispectrum are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale and amplification invariant, as well. A minimal set of these invariants is selected as the feature vector for pattern classification, and a minimum distance classifier using a statistical distance measure is used to classify test patterns. The classification technique is shown to distinguish two similar, but different bolts given their one-dimensional profiles. Pattern recognition using higher order spectral invariants is fast, suited for parallel implementation, and has high immunity to additive Gaussian noise. Simulation results show very high classification accuracy, even for low signal-to-noise ratios.
Resumo:
Higher order spectral analysis is used to investigate nonlinearities in time series of voltages measured from a realization of Chua's circuit. For period-doubled limit cycles, quadratic and cubic nonlinear interactions result in phase coupling and energy exchange between increasing numbers of triads and quartets of Fourier components as the nonlinearity of the system is increased. For circuit parameters that result in a chaotic Rossler-type attractor, bicoherence and tricoherence spectra indicate that both quadratic and cubic nonlinear interactions are important to the dynamics. When the circuit exhibits a double-scroll chaotic attractor the bispectrum is zero, but the tricoherences are high, consistent with the importance of higher-than-second order nonlinear interactions during chaos associated with the double scroll.
Resumo:
Higher-order spectral analysis is used to detect the presence of secondary and tertiary forced waves associated with the nonlinearity of energetic swell observed in 8- and 13-m water depths. Higher-order spectral analysis techniques are first described and then applied to the field data, followed by a summary of the results.
Resumo:
Polynomial models are shown to simulate accurately the quadratic and cubic nonlinear interactions (e.g. higher-order spectra) of time series of voltages measured in Chua's circuit. For circuit parameters resulting in a spiral attractor, bispectra and trispectra of the polynomial model are similar to those from the measured time series, suggesting that the individual interactions between triads and quartets of Fourier components that govern the process dynamics are modeled accurately. For parameters that produce the double-scroll attractor, both measured and modeled time series have small bispectra, but nonzero trispectra, consistent with higher-than-second order nonlinearities dominating the chaos.
Resumo:
This paper presents results on the robustness of higher-order spectral features to Gaussian, Rayleigh, and uniform distributed noise. Based on cluster plots and accuracy results for various signal to noise conditions, the higher-order spectral features are shown to be better than moment invariant features.