893 resultados para Hierarchical cluster analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the novel use of cluster analysis in the field of industrial process control. The severe multivariable process problems encountered in manufacturing have often led to machine shutdowns, where the need for corrective actions arises in order to resume operation. Production faults which are caused by processes running in less efficient regions may be prevented or diagnosed using a reasoning based on cluster analysis. Indeed the intemal complexity of a production machinery may be depicted in clusters of multidimensional data points which characterise the manufacturing process. The application of a Mean-Tracking cluster algorithm (developed in Reading) to field data acquired from a high-speed machinery will be discussed. The objective of such an application is to illustrate how machine behaviour can be studied, in particular how regions of erroneous and stable running behaviour can be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elephant poaching and the ivory trade remain high on the agenda at meetings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Well-informed debates require robust estimates of trends, the spatial distribution of poaching, and drivers of poaching. We present an analysis of trends and drivers of an indicator of elephant poaching of all elephant species. The site-based monitoring system known as Monitoring the Illegal Killing of Elephants (MIKE), set up by the 10th Conference of the Parties of CITES in 1997, produces carcass encounter data reported mainly by anti-poaching patrols. Data analyzed were site by year totals of 6,337 carcasses from 66 sites in Africa and Asia from 2002–2009. Analysis of these observational data is a serious challenge to traditional statistical methods because of the opportunistic and non-random nature of patrols, and the heterogeneity across sites. Adopting a Bayesian hierarchical modeling approach, we used the proportion of carcasses that were illegally killed (PIKE) as a poaching index, to estimate the trend and the effects of site- and country-level factors associated with poaching. Important drivers of illegal killing that emerged at country level were poor governance and low levels of human development, and at site level, forest cover and area of the site in regions where human population density is low. After a drop from 2002, PIKE remained fairly constant from 2003 until 2006, after which it increased until 2008. The results for 2009 indicate a decline. Sites with PIKE ranging from the lowest to the highest were identified. The results of the analysis provide a sound information base for scientific evidence-based decision making in the CITES process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boreal winter wind storm situations over Central Europe are investigated by means of an objective cluster analysis. Surface data from the NCEP-Reanalysis and ECHAM4/OPYC3-climate change GHG simulation (IS92a) are considered. To achieve an optimum separation of clusters of extreme storm conditions, 55 clusters of weather patterns are differentiated. To reduce the computational effort, a PCA is initially performed, leading to a data reduction of about 98 %. The clustering itself was computed on 3-day periods constructed with the first six PCs using "k-means" clustering algorithm. The applied method enables an evaluation of the time evolution of the synoptic developments. The climate change signal is constructed by a projection of the GCM simulation on the EOFs attained from the NCEP-Reanalysis. Consequently, the same clusters are obtained and frequency distributions can be compared. For Central Europe, four primary storm clusters are identified. These clusters feature almost 72 % of the historical extreme storms events and add only to 5 % of the total relative frequency. Moreover, they show a statistically significant signature in the associated wind fields over Europe. An increased frequency of Central European storm clusters is detected with enhanced GHG conditions, associated with an enhancement of the pressure gradient over Central Europe. Consequently, more intense wind events over Central Europe are expected. The presented algorithm will be highly valuable for the analysis of huge data amounts as is required for e.g. multi-model ensemble analysis, particularly because of the enormous data reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive experiments involving motor execution (ME) and motor imagery (MI) have been intensively studied using functional magnetic resonance imaging (fMRI). However, the functional networks of a multitask paradigm which include ME and MI were not widely explored. In this article, we aimed to investigate the functional networks involved in MI and ME using a method combining the hierarchical clustering analysis (HCA) and the independent component analysis (ICA). Ten right-handed subjects were recruited to participate a multitask experiment with conditions such as visual cue, MI, ME and rest. The results showed that four activation clusters were found including parts of the visual network, ME network, the MI network and parts of the resting state network. Furthermore, the integration among these functional networks was also revealed. The findings further demonstrated that the combined HCA with ICA approach was an effective method to analyze the fMRI data of multitasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in US landfalling systems. Here we present a tentative study, which examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1° to 0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and sub-tropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity and power dissipation index in each cluster are documented for both configurations. Our results show that except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. We also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, we examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow in geophysical fluids is commonly summarized by coherent streams, for example conveyor belt flows in extratropical cyclones or jet streaks in the upper troposphere. Typically, parcel trajectories are calculated from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This methodology contribution develops a more objective approach to distinguish coherent airstreams within extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the optimal number of cluster classes. The methodology is applied to trajectories associated with the low-level jets of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass through these jet regions is applied prior to clustering; the partitioning into different airstreams is then performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at the tip of the bent-back front further demonstrates the success of the method in that it can distinguish fine-scale flow structure such as descending sting jet airstreams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho busca analisar as finanças públicas dos municípios que compõem o Estado do Rio de Janeiro, cortejando as receitas e despesas orçamentarias destas unidades de governo local. Estes municípios apresentam características sócio-econômicas bastante diversas, que variam conforme seu contigente populacional, aspectos geográficos, evolução histórica e dinamismo econômico. Sem embargo, isto se refere nos níveis de arrecadação e no perfil das despesas de cada das unidades analisadas. Neste sentido, os métodos tradicionais de agregação ¿ por porte e por regiões de governo ¿ freqüentemente , fornecem grupamentos que carecem de certa homogeneidade em relação sócio-econômicos. Desse modo, propõe-se uma tipologia alternativa de agregação, baseada na Cluster analysis, que visa facilitar o planejamento orçamentaria de cada região e do próprio Estado do Rio de Janeiro, por meio do exame de grupamentos que apontem para uma uniformidade ou semelhança no tocante aos aspectos econômicos dos municípios cotejados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of gasoline adulteration by organic solvents is not an easy task, because compounds that constitute the solvents are already in gasoline composition. In this work, the combination of Hydrogen Nuclear Magnetic Resonance ((1)H NMR) spectroscopic fingerprintings with pattern-recognition multivariate Soft Independent Modeling of Class Analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality in a Monitoring Program for Quality Control of Automotive Fuels. SIMCA was performed on spectroscopic fingerprints to classify the quality of representative commercial gasoline samples selected by Hierarchical Cluster Analysis (HCA) and collected over a 6-month period from different gas stations in the São Paulo state, Brazil. Following optimized the (1)H NMR-SIMCA algorithm, it was possible to correctly classify 92.0% of commercial gasoline samples, which is considered acceptable. The chemometric method is recommended for routine applications in Quality-Control Monitoring Programs, since its measurements are fast and can be easily automated. Also, police laboratories could employ this method for rapid screening analysis to discourage adulteration practices. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contents of some nutrients in 35 Brazilian green and roasted coffee samples were determined by flame atomic absorption spectrometry (Ca, Mg, Fe, Cu, Mn, and Zn), flame atomic emission photometry (Na and K) and Kjeldahl (N) after preparing the samples by wet digestion procedures using i) a digester heating block and ii) a conventional microwave oven system with pressure and temperature control. The accuracy of the procedures was checked using three standard reference materials (National Institute of Standards and Technology, SRM 1573a Tomato Leaves, SRM 1547 Peach Leaves, SRM 1570a Trace Elements in Spinach). Analysis of data after application of t-test showed that results obtained by microwave-assisted digestion were more accurate than those obtained by block digester at 95% confidence level. Additionally to better accuracy, other favorable characteristics found were lower analytical blanks, lower reagent consumption, and shorter digestion time. Exploratory analysis of results using Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that Na, K, Ca, Cu, Mg, and Fe were the principal elements to discriminate between green and roasted coffee samples. ©2007 Sociedade Brasileira de Química.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex biological systems require sophisticated approach for analysis, once there are variables with distinct measure levels to be analyzed at the same time in them. The mouse assisted reproduction, e.g. superovulation and viable embryos production, demand a multidisciplinary control of the environment, endocrinologic and physiologic status of the animals, of the stressing factors and the conditions which are favorable to their copulation and subsequently oocyte fertilization. In the past, analyses with a simplified approach of these variables were not well succeeded to predict the situations that viable embryos were obtained in mice. Thereby, we suggest a more complex approach with association of the Cluster Analysis and the Artificial Neural Network to predict embryo production in superovulated mice. A robust prediction could avoid the useless death of animals and would allow an ethic management of them in experiments requiring mouse embryo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations of 39 organic compounds were determined in three fractions (head, heart and tail) obtained from the pot still distillation of fermented sugarcane juice. The results were evaluated using analysis of variance (ANOVA), Tukey's test, principal component analysis (PCA), hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). According to PCA and HCA, the experimental data lead to the formation of three clusters. The head fractions give rise to a more defined group. The heart and tail fractions showed some overlap consistent with its acid composition. The predictive ability of calibration and validation of the model generated by LDA for the three fractions classification were 90.5 and 100%, respectively. This model recognized as the heart twelve of the thirteen commercial cachacas (92.3%) with good sensory characteristics, thus showing potential for guiding the process of cuts.