1000 resultados para Hidrocarbonetos do petróleo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Potengi river estuary is located in the region of Natal (RN, Brazil), comprising a population of approximately 1,000,000 inhabitants. Besides the dominant urban presence, the estuary has fragments of mangrove forest. The objective of this study is to determine the aliphatic hydrocarbons found in the bottom sediments of this estuary, identifying their levels, distribution and their possible origins through the diagnostic rates, indexes and results comparisons with the local anthropic and natural characteristics. The samples were obtained according to a plan that allowed sampling of the estuary up to 12 km upstream from it as mounth. 36 stations were selected, grouped into 12 cross sections through the course of the river and spaced on average by 1 km. Each section consisted of three stations: the right margin, the deepest point and the left margin. The hydrocarbon n-alkanes from C10 to C36, the isoprenoids pristane and phytane, the unresolved complex mixture (UCM) and the total resolved hydrocarbons were analyzed by gas chromatography. N-alkanes, pristane, phytane and UCM were detected only at some stations. In the other, the concentration was below the detection limit defined by the analytical method (0.1 mg / kg), preventing them from being analyzed to determine the origin of the material found. By using different parameters, the results show that the estuary receives both the input of petrogenic hydrocarbons, but also of biogenic hydrocarbons, featuring a mixture of sources and relatively impacted portions. Based on the characteristics and activities found in the region, it is possible to affirm that petrogenic sources related to oil products enter the estuary via urban runoff or boats traffic, boat washing and fueling. Turning to the biogenic source, the predominant origin was terrestrial, characterized by vascular plants, indicating contribution of mangrove vegetation. It was evident the presence of, at specific points in the estuary, hydrocarbon pollution, and, therefore is recommended the adoption of actions aimed at interrupting or, at least, mitigating the sources potentially capable of damp petrogenic hydrocarbons in the estuary studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increase hydrocarbons production is the main goal of the oilwell industry worldwide. Hydraulic fracturing is often applied to achieve this goal due to a combination of attractive aspects including easiness and low operational costs associated with fast and highly economical response. Conventional fracturing usually involves high-flowing high-pressure pumping of a viscous fluid responsible for opening the fracture in the hydrocarbon producing rock. The thickness of the fracture should be enough to assure the penetration of the particles of a solid proppant into the rock. The proppant is driven into the target formation by a carrier fluid. After pumping, all fluids are filtered through the faces of the fracture and penetrate the rock. The proppant remains in the fracture holding it open and assuring high hydraulic conductivity. The present study proposes a different approach for hydraulic fracturing. Fractures with infinity conductivity are formed and used to further improve the production of highly permeable formations as well as to produce long fractures in naturally fractured formations. Naturally open fractures with infinite conductivity are usually encountered. They can be observed in rock outcrops and core plugs, or noticed by the total loss of circulation during drilling (even with low density fluids), image profiles, pumping tests (Mini-Frac and Mini Fall Off), and injection tests below fracturing pressure, whose flow is higher than expected for radial Darcian ones. Naturally occurring fractures are kept open by randomly shaped and placed supporting points, able to hold the faces of the fracture separate even under typical closing pressures. The approach presented herein generates infinite conductivity canal held open by artificially created parallel supporting areas positioned both horizontally and vertically. The size of these areas is designed to hold the permeable zones open supported by the impermeable areas. The England & Green equation was used to theoretically prove that the fracture can be held open by such artificially created set of horizontal parallel supporting areas. To assess the benefits of fractures characterized by infinite conductivity, an overall comparison with finite conductivity fractures was carried out using a series of parameters including fracture pressure loss and dimensionless conductivity as a function of flow production, FOI folds of increase, flow production and cumulative production as a function of time, and finally plots of net present value and productivity index

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the native prokaryotes in hazardous locations favors the application of biotechnology for bioremediation. Independent strategies for cultivation and metagenomics contribute to further microbiological knowledge, enabling studies with non-cultivable about the "native microbiological status and its potential role in bioremediation, for example, of polycyclic aromatic hydrocarbons (HPA's). Considering the biome mangrove interface fragile and critical bordering the ocean, this study characterizes the native microbiota mangrove potential biodegradability of HPA's using a biomarker for molecular detection and assessment of bacterial diversity by PCR in areas under the influence of oil companies in the Basin Petroleum Geology Potiguar (BPP). We chose PcaF, a metabolic enzyme, to be the molecular biomarker in a PCR-DGGE detection of prokaryotes that degrade HPA s. The PCR-DGGE fingerprints obtained from Paracuru-CE, Fortim-CE and Areia Branca-RN samples revealed the occurrence of fluctuations of microbial communities according to the sampling periods and in response to the impact of oil. In the analysis of microbial communities interference of the oil industry, in Areia Branca-RN and Paracuru-CE was observed that oil is a determinant of microbial diversity. Fortim-CE probably has no direct influence with the oil activity. In order to obtain data for better understanding the transport and biodegradation of HPA's, there were conducted in silico studies with modeling and simulation from obtaining 3-D models of proteins involved in the degradation of phenanthrene in the transport of HPA's and also getting the 3-D model of the enzyme PcaF used as molecular marker in this study. Were realized docking studies with substrates and products to a better understanding about the transport mechanism and catalysis of HPA s

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial activities, oil spills and its derivatives, as well as the incomplete combustion of fossil fuels have caused a great accumulation of hydrocarbons in the environment. The number of microorganisms on the planet is estimated at 1030 and prokaryotes the most abundant. They colonized diverse environments for thousands of years, including those considered extreme and represent an untapped source of metabolic and genetic diversity with a large biotechnological potential. It is also known that certain microorganisms have the enzymatic capacity to degrade petroleum hydrocarbons and, in many ecosystems, there is an indigenous community capable of performing this function. The metagenomic has revolutionized the microbiology allowing access uncultured microbial communities, being a powerful tool for elucidation of their ecological functions and metabolic profiles, as well as for identification of new biomolecules. Thus, this study applied metagenomic approaches not only for functional selection of genes involved in biodegradation and emulsification processes of the petroleum-derived hydrocarbons, but also to describe the taxonomic and metabolic composition of two metagenomes from aquatic microbiome. We analyzed 123.116 (365 ± 118 bp) and 127.563 sequences (352 ± 120 bp) of marine and estuarine metagenomes, respectively. Eight clones were found, four involved in the petroleum biodegradation and four were able to emulsify kerosene indicating their abilities in biosurfactants synthesis. Therefore, the metagenomic analyses performed were efficient not only in the search of bioproducts of biotechnological interest and in the analysis of the functional and taxonomic profile of the metagenomes studied as well

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recognizing the need to preserve a national ethnic minority, the Constitution, inspired by the pluralistic values of the Constitutional Law State, stipulated a series of rights and guarantees for the conservation of indigenous cultural singularity, disciplining in article 231 the Indians right to maintain their social organization, customs, languages, beliefs and traditions, as well as safeguarding the rights to the lands they traditionally occupy, and the exclusive use of the wealth existing in them, premise of ensuring their physical and cultural continuity, breaking decisively with the paradigm the assimilation of the Indian national civilization. However, despite the Indian policy of ethnic and cultural preservation, the Constitution allowed the exploitation of minerals in aboriginal territory, incorporated herein hydrocarbons, provided they meet certain predetermined requirements, leaving it to the legislature the discipline of ordinary matter. However, this law has not yet been published, with some projects in the National Congress, leaving thus precluding the indigenous subsurface oil exploration until the enactment of enabling legislation. Meanwhile, this paper carries out an integrated analysis of the constitutional protection of ethnic and cultural uniqueness of indigenous peoples, Convention Nº 169 of the International Labour Organization and the bill presented by Deputy Eduardo Valverde, in an attempt to consolidate sustainable development practices in the sector, through developing a system of social and environmental responsible oil exploration, aligning with national energy needs to maintain a balanced environment and preservation of socio-cultural organization of a minority so weakened and beaten over five centuries of domination

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petroleum is a complex combination of various classes of hydrocarbons, with paraffinic, naphtenic and aromatic compounds being those more commonly found in its composition. The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, enhanced recovery methods are cited in applications where conventional techniques have proven to be little effective. The injection of surfactant solutions as an enhanced recovery method is advantageous in that surfactants are able to reduce the interfacial tensions between water and oil, thus augmenting the displacement efficiency and, as a consequence, increasing the recovery factor. This work aims to investigate the effects of some parameters that influence the surfactant behavior in solution, namely the type of surfactant, the critical micelle concentration (CMC) and the surface and interface tensions between fluids. Seawater solutions containing the surfactants PAN, PHN and PJN have been prepared for presenting lower interfacial tensions with petroleum and higher stability under increasing temperature and salinity. They were examined in an experimental apparatus designed to assess the recovery factor. Botucatu (Brazil) sandstone plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The plugs had porosity between 29.6 and 32.0%, with average effective permeability to water of 83 mD. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of the natural gas is growing year after year in the whole world and also in Brazil. It is verified that in the last five years the profile of natural gas consumption reached a great advance and investments had been carried through in this area. In the oil industry, the use of the natural gas for fuel in the drive of engines is usual for a long date. It is also used to put into motion equipment, or still, to generate electric power. Such engines are based on the motor cycle of combustion Otto, who requires a natural gas with well definite specification, conferring characteristic anti-detonating necessary to the equipment performance for projects based on this cycle. In this work, process routes and thermodynamic conditions had been selected and evaluated. Based on simulation assays carried out in commercial simulators the content of the methane index of the effluent gas were evaluated at various ranges of pressure, temperature, flowrate, molecular weight and chemical nature and composition of the absorbent. As final result, it was established a route based on process efficiency, optimized consumption of energy and absorbent. Thereby, it serves as base for the compact equipment conception to be used in locu into the industry for the removal of hydrocarbon from the natural gas produced

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work had as objective to apply an experimental planning aiming at to improve the efficiency of separation of a new type of mixer-settler applied to treat waste water contaminated with oil. An unity in scale of laboratory, was installed in the Post-graduation Program of Chemical Engineering of UFRN. It was constructed in partnership with Petrobras S.A. This called device Misturador-Decantador a Inversão de Fases (MDIF) , possess features of conventional mixer-settler and spray column type. The equipment is composed of three main parts: mixing chamber; chamber of decantation and chamber of separation. The efficiency of separation is evaluated analyzing the oil concentrations in water in the feed and the output of the device. For the analysis one used the gravimetric method of oil and greases analysis (TOG). The system in study is a water of formation emulsified with oil. The used extractant is a mixture of Turpentine spirit hydro-carbons, supplied for Petrobras. It was applied, for otimization of the efficiency of separation of the equipment, an experimental planning of the composite central type, having as factorial portion fractionary factorial planning 2 5-2, with the magnifying of the type star and five replications in the central point. In this work, the following independents variables were studied: contents of oil in the feed of the device; volumetric ratio (O/A); total flowrate ; agitation in the mixing chamber and height of the organic bed. Minimum and maximum limits for the studied variables had been fixed according previous works. The analysis of variance for the equation of the empirical model, revealed statistically significant and useful results for predictions ends. The variance analysis also presented the distribution of the error as a normal distribution and was observed that as the dispersions do not depend on the levels of the factors, the independence assumption can be verified. The variation around the average is explained by 98.98%, or either, equal to the maximum value, being the smoothing of the model in relation to the experimental points of 0,98981. The results present a strong interaction between the variable oil contents in the feed and agitation in the mixing chamber, having great and positive influence in the separation efficiency. Another variable that presented a great positive influence was the height of the organic bed. The best results of separation efficiency had been obtained for high flowrates when associates the high oil concentrations and high agitation. The results of the present work had shown excellent agreement with the results carried out through previous works with the mixer-settler of phase inversion

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crude oil is a complex liquid mixture of organic and inorganic compounds that are dominated by hydrocarbons. It is a mixture of alkanes from the simplest to more complex aromatic compounds that are present derivatives such as gasoline, diesel, alcohol, kerosene, naphtha, etc.. These derivatives are extracted from any oil, however, only with a very high quality, in other words, when the content of hydrocarbons of low molecular weight is high means that production of these compounds is feasible. The American Petroleum Institute (API) developed a classification system for the various types of oil. In Brazil, the quality of most of the oil taken from wells is very low, so it is necessary to generate new technology to develop best practices for refining in order to produce petroleum products of higher commercial value. Therefore, it is necessary to study the thermodynamic equilibrium properties of its derivative compounds of interest. This dissertation aims to determine vapor-liquid equilibrium (VLE) data for the systems Phenilcyclohexane - CO2, and Cyclohexane - Phenilcyclohexane - CO2 at high pressure and temperatures between 30 to 70oC. Furthermore, comparisons between measured VLE experimental data from this work and from the literature in relation to the Peng- Robinson molecular thermodynamic model, using a simulation program SPECS IVCSEP v5.60 and two adjustable interaction parameters, have been performed for modeling and simulation purposes. Finally, the developed apparatus for determination of phase equilibrium data at high pressures is presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition of petroleum may change from well to well and its resulting characteristics influence significantly the refine products. Therefore, it is important to characterize the oil in order to know its properties and send it adequately for processing. Since petroleum is a multicomponent mixture, the use of synthetic mixtures that are representative of oil fractions provides a better understand of the real mixture behavior. One way for characterization is usually obtained through correlation of physico-chemical properties of easy measurement, such as density, specific gravity, viscosity, and refractive index. In this work new measurements were obtained for density, specific gravity, viscosity, and refractive index of the following binary mixtures: n-heptane + hexadecane, cyclohexane + hexadecane, and benzene + hexadecane. These measurements were accomplished at low pressure and temperatures in the range 288.15 K to 310.95 K. These data were applied in the development of a new method of oil characterization. Furthermore, a series of measurements of density at high pressure and temperature of the binary mixture cyclohexane + n-hexadecane were performed. The ranges of pressure and temperature were 6.895 to 62.053 MPa and 318.15 to 413.15 K, respectively. Based on these experimental data of compressed liquid mixtures, a thermodynamic modeling was proposed using the Peng-Robinson equation of state (EOS). The EOS was modified with scaling of volume and a relatively reduced number of parameters were employed. The results were satisfactory demonstrating accuracy not only for density data, but also for isobaric thermal expansion and isothermal compressibility coefficients. This thesis aims to contribute in a scientific manner to the technological problem of refining heavy fractions of oil. This problem was treated in two steps, i.e., characterization and search of the processes that can produce streams with economical interest, such as solvent extraction at high pressure and temperature. In order to determine phase equilibrium data in these conditions, conceptual projects of two new experimental apparatus were developed. These devices consist of cells of variable volume together with a analytical static device. Therefore, this thesis contributed with the subject of characterization of hydrocarbons mixtures and with development of equilibrium cells operating at high pressure and temperature. These contributions are focused on the technological problem of refining heavy oil fractions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work are established initially the fundamental relationships of thermodynamics that govern the equilibrium between phases, the models used for the description of the behavior non ideal of the liquid and vapor phases in conditions of low pressures. This work seeks the determination of vapor-liquid equilibrium (VLE) data for a series of multicomponents mixtures of saturated aliphatic hydrocarbons, prepared synthetically starting from substances with analytical degree and the development of a new dynamic cell with circulation of the vapor phase. The apparatus and experimental procedures developed are described and applied for the determination of VLE data. VLE isobarics data were obtained through a Fischer's ebulliometer of circulation of both phases, for the systems pentane + dodecane, heptane + dodecane and decane + dodecane. Using the two new dynamic cells especially projected, of easy operation and low cost, with circulation of the vapor phase, data for the systems heptane + decane + dodecane, acetone + water, tween 20 + dodecane, phenol + water and distillation curves of a gasoline without addictive were measured. Compositions of the equilibrium phases were found by densimetry, chromatography, and total organic carbon analyzer. Calibration curves of density versus composition were prepared from synthetic mixtures and the behavior excess volumes were evaluated. The VLE data obtained experimentally for the hydrocarbon and aqueous systems were submitted to the test of thermodynamic consistency, as well as the obtained from the literature data for another binary systems, mainly in the bank DDB (Dortmund Data Bank), where the Gibbs-Duhem equation is used obtaining a satisfactory data base. The results of the thermodynamic consistency tests for the binary and ternary systems were evaluated in terms of deviations for applications such as model development. Later, those groups of data (tested and approved) were used in the KijPoly program for the determination of the binary kij parameters of the cubic equations of state original Peng-Robinson and with the expanded alpha function. These obtained parameters can be applied for simulation of the reservoirs petroleum conditions and of the several distillation processes found in the petrochemistry industry, through simulators. The two designed dynamic cells used equipments of national technology for the determination Humberto Neves Maia de Oliveira Tese de Doutorado PPGEQ/PRH-ANP 14/UFRN of VLE data were well succeed, demonstrating efficiency and low cost. Multicomponents systems, mixtures of components of different molecular weights and also diluted solutions may be studied in these developed VLE cells

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products