967 resultados para Heavy-quark
Resumo:
In this work, we discuss the contribution of the mesonic loops to the decay rates of chi(c1) -> phi phi, omega omega, which are suppressed by the helicity selection rules and chi(c1) -> phi omega, which is a double- Okubo- ZweigIizuka forbidden process. We find that the mesonic loop effects naturally explain the clear signals of chi(c1) -> phi phi, omega omega decay modes observed by the BES Collaboration. Moreover, we investigate the effects of the omega - phi mixing, which may result in the order of magnitude of the branching ratio BR(chi(c1) -> omega phi) being 10(-7). Thus, we are waiting for the accurate measurements of the BR(chi(c1) -> omega omega), BR(chi(c1) -> phi phi) and BR(chi(c1) -> omega phi) which may be very helpful for testing the long- distant contribution and the omega - phi mixing in chi(c1) -> phi phi, omega omega, omega phi decays.
Resumo:
The discrepancy between the PQCD calculation and the CLEO data for chi (c1)->gamma V (V=rho (0), omega, phi) stimulates our interest in exploring other mechanisms of chi (c1) decay. In this work, we apply an important non-perturbative QCD effect, i.e., the hadronic loop mechanism, to study chi (c1)->gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of chi (c1)->gamma V are consistent with the corresponding CLEO data of chi (c1)->gamma V. We expect further experimental measurement of chi (c1)->gamma V, which will be helpful to test the hadronic loop effect on chi (c1) decay.
Resumo:
We calculate the form factors and the coupling constant in the D*D rho vertex in the framework of QCD sum rules. We evaluate the three-point correlation functions of the vertex considering D, rho and D* mesons off-shell. The form factors obtained are very different but give the same coupling constant: g(D*D rho) = 4.3 +/- 0.9 GeV(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The complete understanding of the basic constituents of hadrons and the hadronic dynamics at high energies are two of the main challenges for the theory of strong interactions. In particular, the existence of intrinsic heavy quark components in the hadron wave function must be confirmed (or disproved). In this paper we propose a new mechanism for the production of D-mesons at forward rapidities based on the Color Glass Condensate (CGC) formalism and demonstrate that the resulting transverse momentum spectra are strongly dependent on the behavior of the charm distribution at large Bjorken x. Our results show clearly that the hypothesis of intrinsic charm can be tested in pp and p(d)A collisions at RHIC and LHC. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We summarize the first results for masses and decay constants of bottom-strange (pseudo-scalar and vector) mesons from nonperturbatively renormalized heavy-quark effective theory (HQET), using lattice-QCD simulations in the quenched approximation.
Resumo:
Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the B(s) system at static order. We also determine the splitting between first excited and ground state, and between the B(s)* and B(s) ground states to order 1/m(b). The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach.
Resumo:
The effect of lepton transverse polarization in B-0-->D(-)l(+)nu(l), B+-->(D) over bar (0)l(+)nu(l) decays (l=tau,mu) is analyzed within the framework of the standard model in the leading order of heavy quark effective theory. It is shown that a nonzero transverse polarization appears due to the electromagnetic final state interaction. The diagrams with intermediate D,D* mesons contributing to the nonvanishing P-T are considered. Regarding only the contribution of these mesons, the values of the tau-lepton transverse polarization averaged over the physical region in the B-0-->D(-)tau(+)nu(l) and B+-->(D) over bar (0)tau(+)nu(l) decays are equal to 2.60x10(-3) and -1.59x10(-3), respectively. In the case of muon decay modes the values of [P-T] are equal to 2.97x10(-4) and -6.79x10(-4).
Resumo:
First measurements of the differential cross sections d(3)sigma/(dp(T)(gamma)dy(gamma)dy(jet)) for the inclusive production of a photon in association with a heavy quark (b, c) jet are presented, covering photon transverse momenta 30 < p(T)(gamma)< 150 GeV, photon rapidities |y(gamma)|< 1.0, jet rapidities |y(jet)|< 0.8, and jet transverse momenta p(T)(jet)> 15 GeV. The results are based on an integrated luminosity of 1 fb(-1) in pp collisions at s=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider. The results are compared with next-to-leading order perturbative QCD predictions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The homogeneous Lippmann-Schwinger integral equation is solved in momentum space by using confining potentials. Since the confining potentials are unbounded at large distances, they lead to a singularity at small momentum. In order to remove the singularity of the kernel of the integral equation, a regularized form of the potentials is used. As an application of the method, the mass spectra of heavy quarkonia, mesons consisting from heavy quark and antiquark (Υ(bb̄), ψ(cc̄)), are calculated for linear and quadratic confining potentials. The results are in good agreement with configuration space and experimental results. © 2010 American Institute of Physics.
Resumo:
With the one-boson-exchange model, we study the interaction between the S-wave D(*)/D-s(*) meson and S-wave B(*)/B-s(*) meson considering the S-D mixing effect. Our calculation indicates that there may exist the B-c-like molecular states. We estimate their masses and list the possible decay modes of these B-c-like molecular states, which may be useful to the future experimental search.
Resumo:
In this thesis, a systematic analysis of the bar B to X_sgamma photon spectrum in the endpoint region is presented. The endpoint region refers to a kinematic configuration of the final state, in which the photon has a large energy m_b-2E_gamma = O(Lambda_QCD), while the jet has a large energy but small invariant mass. Using methods of soft-collinear effective theory and heavy-quark effective theory, it is shown that the spectrum can be factorized into hard, jet, and soft functions, each encoding the dynamics at a certain scale. The relevant scales in the endpoint region are the heavy-quark mass m_b, the hadronic energy scale Lambda_QCD and an intermediate scale sqrt{Lambda_QCD m_b} associated with the invariant mass of the jet. It is found that the factorization formula contains two different types of contributions, distinguishable by the space-time structure of the underlying diagrams. On the one hand, there are the direct photon contributions which correspond to diagrams with the photon emitted directly from the weak vertex. The resolved photon contributions on the other hand arise at O(1/m_b) whenever the photon couples to light partons. In this work, these contributions will be explicitly defined in terms of convolutions of jet functions with subleading shape functions. While the direct photon contributions can be expressed in terms of a local operator product expansion, when the photon spectrum is integrated over a range larger than the endpoint region, the resolved photon contributions always remain non-local. Thus, they are responsible for a non-perturbative uncertainty on the partonic predictions. In this thesis, the effect of these uncertainties is estimated in two different phenomenological contexts. First, the hadronic uncertainties in the bar B to X_sgamma branching fraction, defined with a cut E_gamma > 1.6 GeV are discussed. It is found, that the resolved photon contributions give rise to an irreducible theory uncertainty of approximately 5 %. As a second application of the formalism, the influence of the long-distance effects on the direct CP asymmetry will be considered. It will be shown that these effects are dominant in the Standard Model and that a range of -0.6 < A_CP^SM < 2.8 % is possible for the asymmetry, if resolved photon contributions are taken into account.
Resumo:
We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T2.33TC.
Resumo:
The extraction of the finite temperature heavy quark potential from lattice QCD relies on a spectral analysis of the Wilson loop. General arguments tell us that the lowest lying spectral peak encodes, through its position and shape, the real and imaginary parts of this complex potential. Here we benchmark this extraction strategy using leading order hard-thermal loop (HTL) calculations. In other words, we analytically calculate the Wilson loop and determine the corresponding spectrum. By fitting its lowest lying peak we obtain the real and imaginary parts and confirm that the knowledge of the lowest peak alone is sufficient for obtaining the potential. Access to the full spectrum allows an investigation of spectral features that do not contribute to the potential but can pose a challenge to numerical attempts of an analytic continuation from imaginary time data. Differences in these contributions between the Wilson loop and gauge fixed Wilson line correlators are discussed. To better understand the difficulties in a numerical extraction we deploy the maximum entropy method with extended search space to HTL correlators in Euclidean time and observe how well the known spectral function and values for the real and imaginary parts are reproduced. Possible venues for improvement of the extraction strategy are discussed.