910 resultados para Heavier trivalent lanthanides


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state compounds with a general formula of LnL3· nH2O, where Ln stands for lighter trivalent lanthanides (lanthanum to samarium), L is 2-methoxybenzylidenepyruvate and n=1.5, 2, 2, 1.5 and 2, respectively, have been synthesized. On heating these compounds are decompose in two or three steps. They lose their hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of the respective oxide, CeO2, Pr6O11 and Ln 2O3 (Ln=La, Nd, Sm) as final residue. The dehydration enthalpies found for these compounds (La to Sm) were: 222.7, 163.6, 497.7, 513.9 and 715.4 kJ mol-1, respectively. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid compounds of general formula LnL3 for La and Ce and LnL3·nH2O for Pr, Nd and Sm where Ln stands for trivalent lanthanides, L is 2-chlorobenzylidenepyruvate and n=2, 3 and 2 respectively, have been synthesized. On heating these compounds decompose in two or five steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of the respective oxide, CeO2, Pr6O11 and Ln 2O3 (Ln=La, Nd, Sm) as final residue. The dehydration enthalpies found for these compounds (Pr, Nd and Sm) were: 140.1, 148.2 and 221.3 kJ mol-1, respectively. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state LnL3·1.25H2O compounds, where L is oxamate and Ln is light trivalent lanthanides, have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis, complexometry, and X-ray powder diffractometry were used to characterize and to study the thermal behavior of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, and gaseous products evolved during the thermal decomposition of these compounds in dynamic air atmosphere. The dehydration occurs in a single step and through a slow process. The thermal decomposition of the anhydrous compounds occur in a single (Ce), two (Pr), and three (La, Nd to Gd) steps with the formation of the respective oxides, CeO2, Pr 6O11, and Ln2O3 (Ln = La, Nd to Gd). The theoretical and experimental spectroscopic study suggests that the carboxylate group and amide carbonyl group of oxamate are coordinate to the metals in a bidentate chelating mode. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state compounds of yttrium and lanthanide chelates of ethylenediaminetetraacetic acid have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), theoretical and experimental infrared spectroscopy (FTIR), elemental analysis, complexometry and TG-DSC coupled to FTIR were used to characterize and to study the thermal decomposition of these compounds. The results provided information about the composition, dehydration, thermal stability, thermal decomposition and identification of gaseous products evolved during the thermal decomposition of these compounds. The theoretical and experimental spectroscopic data suggest the possible modes of coordination of the ligand with the lanthanum and terbium metal ions. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protonation constants of benzylidenepyruvate, 2-chloro-, 4-chlorobenzylidinepyruvate and cinnamylidenepyruvate as well as the stability constants of their binary 1:1 complexes with Cu(II), La(III), Pr(III), Sm(III), Lu(III), Sc(III) and Th(IV) have been determined spectrophotometrically in an aqueous medium at 25 °C and ionic strength 0.500 M, held with sodium perchlorate. Coordination centres in the aforementioned ligands are suggested. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state LnL(3) compounds, where L is 2-metboxybenzoate and Ln is light trivalent lanthanides, have been synthesized. Thermogravimetry (TG), differential scanning calorimetty (DSC), X-ray powder diffractometry, infrared spectroscopy and elementary analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information on the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds. on heating these complexes decompose in three (Ce, Pr) or five (La, Nd, Sm) steps with the formation of the respective oxide: CeO2, Pr6O11 and Ln(2)O(3) (Ln=La, Nd, Sm) as final residues. The theoretical and experimental spectroscopic study suggests predominantly the ionic bond between the ligand and metallic center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state Ln-DMBP compounds, where Ln represents trivalent lanthanides (except for promethium) and yttrium, and DMBP is 4-dimethylaminobenzylidenepyruvate, were prepared. Thermogravimetry (TG), differential thermal analysis (DTA), and other methods of analysis were used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1993.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides (Tb-Lu) and L is malonate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, TG-FTIR system, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The dehydration of the compounds begins at 303 K and the anhydrous compounds are stable up to 548 K. The results also provided information concerning the ligand's denticity, thermal behaviour and identification of some gaseous products evolved during the thermal decomposition of these compounds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)