906 resultados para Heat - Transmission - Mathematical models
Resumo:
The degradation of resorbable polymeric devices often takes months to years. Accelerated testing at elevated temperatures is an attractive but controversial technique. The purposes of this paper include: (a) to provide a summary of the mathematical models required to analyse accelerated degradation data and to indicate the pitfalls of using these models; (b) to improve the model previously developed by Han and Pan; (c) to provide a simple version of the model of Han and Pan with an analytical solution that is convenient to use; (d) to demonstrate the application of the improved model in two different poly(lactic acid) systems. It is shown that the simple analytical relations between molecular weight and degradation time widely used in the literature can lead to inadequate conclusions. In more general situations the rate equations are only part of a complete degradation model. Together with previous works in the literature, our study calls for care in using the accelerated testing technique.
Resumo:
Transdermal biotechnologies are an ever increasing field of interest, due to the medical and pharmaceutical applications that they underlie. There are several mathematical models at use that permit a more inclusive vision of pure experimental data and even allow practical extrapolation for new dermal diffusion methodologies. However, they grasp a complex variety of theories and assumptions that allocate their use for specific situations. Models based on Fick's First Law found better use in contexts where scaled particle theory Models would be extensive in time-span but the reciprocal is also true, as context of transdermal diffusion of particular active compounds changes. This article reviews extensively the various theoretical methodologies for studying dermic diffusion in the rate limiting dermic barrier, the stratum corneum, and systematizes its characteristics, their proper context of application, advantages and limitations, as well as future perspectives.
Resumo:
Theoretical epidemiology aims to understand the dynamics of diseases in populations and communities. Biological and behavioral processes are abstracted into mathematical formulations which aim to reproduce epidemiological observations. In this thesis a new system for the self-reporting of syndromic data — Influenzanet — is introduced and assessed. The system is currently being extended to address greater challenges of monitoring the health and well-being of tropical communities.(...)
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Foot and mouth disease (FMD) is a major threat, not only to countries whose economies rely on agricultural exports, but also to industrialised countries that maintain a healthy domestic livestock industry by eliminating major infectious diseases from their livestock populations. Traditional methods of controlling diseases such as FMD require the rapid detection and slaughter of infected animals, and any susceptible animals with which they may have been in contact, either directly or indirectly. During the 2001 epidemic of FMD in the United Kingdom (UK), this approach was supplemented by a culling policy driven by unvalidated predictive models. The epidemic and its control resulted in the death of approximately ten million animals, public disgust with the magnitude of the slaughter, and political resolve to adopt alternative options, notably including vaccination, to control any future epidemics. The UK experience provides a salutary warning of how models can be abused in the interests of scientific opportunism.
Resumo:
This is the first of two articles presenting a detailed review of the historical evolution of mathematical models applied in the development of building technology, including conventional buildings and intelligent buildings. After presenting the technical differences between conventional and intelligent buildings, this article reviews the existing mathematical models, the abstract levels of these models, and their links to the literature for intelligent buildings. The advantages and limitations of the applied mathematical models are identified and the models are classified in terms of their application range and goal. We then describe how the early mathematical models, mainly physical models applied to conventional buildings, have faced new challenges for the design and management of intelligent buildings and led to the use of models which offer more flexibility to better cope with various uncertainties. In contrast with the early modelling techniques, model approaches adopted in neural networks, expert systems, fuzzy logic and genetic models provide a promising method to accommodate these complications as intelligent buildings now need integrated technologies which involve solving complex, multi-objective and integrated decision problems.
Resumo:
This article is the second part of a review of the historical evolution of mathematical models applied in the development of building technology. The first part described the current state of the art and contrasted various models with regard to the applications to conventional buildings and intelligent buildings. It concluded that mathematical techniques adopted in neural networks, expert systems, fuzzy logic and genetic models, that can be used to address model uncertainty, are well suited for modelling intelligent buildings. Despite the progress, the possible future development of intelligent buildings based on the current trends implies some potential limitations of these models. This paper attempts to uncover the fundamental limitations inherent in these models and provides some insights into future modelling directions, with special focus on the techniques of semiotics and chaos. Finally, by demonstrating an example of an intelligent building system with the mathematical models that have been developed for such a system, this review addresses the influences of mathematical models as a potential aid in developing intelligent buildings and perhaps even more advanced buildings for the future.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.
Resumo:
Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.
Resumo:
The constrained compartmentalized knapsack problem can be seen as an extension of the constrained knapsack problem. However, the items are grouped into different classes so that the overall knapsack has to be divided into compartments, and each compartment is loaded with items from the same class. Moreover, building a compartment incurs a fixed cost and a fixed loss of the capacity in the original knapsack, and the compartments are lower and upper bounded. The objective is to maximize the total value of the items loaded in the overall knapsack minus the cost of the compartments. This problem has been formulated as an integer non-linear program, and in this paper, we reformulate the non-linear model as an integer linear master problem with a large number of variables. Some heuristics based on the solution of the restricted master problem are investigated. A new and more compact integer linear model is also presented, which can be solved by a branch-and-bound commercial solver that found most of the optimal solutions for the constrained compartmentalized knapsack problem. On the other hand, heuristics provide good solutions with low computational effort. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
We discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The inclusion of the corona effect in a frequency dependent transmission line model is proposed in this paper. The transmission line is represented through a cascade of π circuits and the frequency dependence of the longitudinal parameters is synthesized with series and parallel resistors and inductors. The corona effect will be represented using the Gary and Skilling-Umoto models. The currents and voltages along the line are calculated by using state-space technique. To demonstrate the accuracy and validity of the proposed frequency dependent line model, time domain simulations of a 10 km length single-phase line response under energization procedure will be presented. ©2008 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)