943 resultados para Harmonic Oscillator
Resumo:
The guessing of eigenfunctions is not trivial at higher quantum numbers, no matter what the system being considered. Instead of guessing, one can employ a symbolic calculus progam (Maple in this case) to aid in the reasoning process.
Resumo:
The Frobenius solution to the differential equations associated with the harmonic oscillator (QM) is carried out in detail.
Resumo:
The molecular dynamical simulation of the normal vibrational mode of water which involves H-O-H angle deformation, when driven by an external force, can be used to see how a driven harmonic oscillator, classically, is associated with the infra-red spectrum of water (and the absorption for this particular normal mode).
Resumo:
The HCl molecule is simulated (using Maple) in its dynamics, for both vibrational (and implied) rotational motions. A discussion of the center of mass transformations involved is part of the total presentation.
Resumo:
Using only linear interactions and a local parity measurement we show how entanglement can be detected between two harmonic oscillators. The scheme generalizes to measure both linear and nonlinear functionals of an arbitrary oscillator state. This leads to many applications including purity tests, eigenvalue estimation, entropy, and distance measures-all without the need for nonlinear interactions or complete state reconstruction. Remarkably, experimental realization of the proposed scheme is already within the reach of current technology with linear optics.
Resumo:
Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.
Resumo:
We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro-and nanomechanical devices coupled to an effective two-level system.
Resumo:
We consider the problem of a harmonic oscillator coupled to a scalar field in the framework of recently introduced dressed coordinates. We compute all the probabilities associated with the decay process of an excited level of the oscillator. Instead of doing direct quantum mechanical calculations we establish some sum rules from which we infer the probabilities associated to the different decay processes of the oscillator. Thus, the sum rules allows to show that the transition probabilities between excited levels follow a binomial distribution. (c) 2005 Published by Elsevier B.V.
Resumo:
We compute the partition function of an anyon-like harmonic oscillator. The well known results for both the bosonic and fermionic oscillators are then re-obtained as particular cases of our function. The technique we employ is a non-relativistic version of the Green function method used in the computation of one-loop effective actions of quantum field theory.
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian -d2/dr2 + r2 + lambda/r5/2, lambda > 0, is reported. A trial function automatically satisfying both the Dirichlet boundary condition at the origin and the boundary condition at infinity is introduced. The results are excellent for a very large range of values of the coupling parameter lambda, suggesting that the present variational function is appropriate for the treatment of the spiked oscillator in all its regimes (strong, moderate, and weak interactions).
Resumo:
The problem of a harmonic oscillator coupling to an electromagnetic potential plus a topological-like (Chern-Simons) massive term, in two-dimensional space, is studied in the light of the symplectic formalism proposed by Faddeev and Jackiw for constrained systems.
Resumo:
Eigenstates of a particle in a localized and unconfined harmonic potential well are investigated. Effects due to the variation of the potential parameters as well as certain results from asymptotic expansions are discussed. © 2012 Springer Science+Business Media, LLC.
Resumo:
Una detallada descripción de la dinámica de bajas energías del entrelazamiento multipartito es proporcionada para sistemas armónicos en una gran variedad de escenarios disipativos. Sin hacer ninguna aproximación central, esta descripción yace principalmente sobre un conjunto razonable de hipótesis acerca del entorno e interacción entorno-sistema, ambas consistente con un análisis lineal de la dinámica disipativa. En la primera parte se deriva un criterio de inseparabilidad capaz de detectar el entrelazamiento k-partito de una extensa clase de estados gausianos y no-gausianos en sistemas de variable continua. Este criterio se emplea para monitorizar la dinámica transitiva del entrelazamiento, mostrando que los estados no-gausianos pueden ser tan robustos frente a los efectos disipativos como los gausianos. Especial atención se dedicada a la dinámica estacionaria del entrelazamiento entre tres osciladores interaccionando con el mismo entorno o diferentes entornos a distintas temperaturas. Este estudio contribuye a dilucidar el papel de las correlaciones cuánticas en el comportamiento de la corrientes energéticas.
Resumo:
Quantum Ohmic residual resistance of a thin disordered wire, approximated as a one-dimensional multichannel conductor, is known to scale exponentially with length. This nonadditivity is shown to imply (i) a low-frequency noise-power spectrum proportional to -ln(Ω)/Ω, and (ii) a dispersive capacitative impedance proportional to tanh(√iΩ )/ √iΩ. A deep connection to the quantum Brownian motion with linear dynamical frictional coupling to a harmonic-oscillator bath is pointed out and interpreted in physical terms.
Resumo:
The exact expressions for the partition function (Q) and the coefficient of specific heat at constant volume (Cv) for a rotating-anharmonic oscillator molecule, including coupling and rotational cut-off, have been formulated and values of Q and Cv have been computed in the temperature range of 100 to 100,000 K for O2, N2 and H2 gases. The exact Q and Cv values are also compared with the corresponding rigid-rotator harmonic-oscillator (infinite rotational and vibrational levels) and rigid-rotator anharmonic-oscillator (infinite rotational levels) values. The rigid-rotator harmonic-oscillator approximation can be accepted for temperatures up to about 5000 K for O2 and N2. Beyond these temperatures the error in Cv will be significant, because of anharmonicity and rotational cut-off effects. For H2, the rigid-rotator harmonic-oscillator approximation becomes unacceptable even for temperatures as low as 2000 K.