993 resultados para Hall effect


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skyrmions are topologically protected spin textures, characterized by a topological winding number N, that occur spontaneously in some magnetic materials. Recent experiments have demonstrated the capability to grow graphene on top Fe/Ir, a system that exhibits a two-dimensional skyrmion lattice. Here we show that a weak exchange coupling between the Dirac electrons in graphene and a two-dimensional skyrmion lattice withN = ±1 drives graphene into a quantum anomalous Hall phase, with a band gap in bulk, a Chern number C = 2N, and chiral edge states with perfect quantization of conductance G = 2N e2 h . Our findings imply that the topological properties of the skyrmion lattice can be imprinted in the Dirac electrons of graphene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the one-way channel formalism of quantum optics has a physical realization in electronic systems. In particular, we show that magnetic edge states form unidirectional quantum channels capable of coherently transporting electronic quantum information. Using the equivalence between one-way photonic channels and magnetic edge states, we adapt a proposal for quantum state transfer to mesoscopic systems using edge states as a quantum channel, and show that it is feasible with reasonable experimental parameters. We discuss how this protocol may be used to transfer information encoded in number, charge, or spin states of quantum dots, so it may prove useful for transferring quantum information between parts of a solid-state quantum computer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Brief Report presents giant extraordinary Hall effect (EHE) in the Ru-mediated antiferromagnetically coupled [Pt/Co]5/Ru/[Co/Pt]5 multilayers (MLs) compared with those MLs without the Ru spacer. The enhancement of the EHE is attributed to the strong Ru/Co interface scattering. Through the variation in the Pt layer thickness and the temperature, we determine the relation between the Hall voltage and the longitudinal resistivity. It is found that the conventional scaling analysis has difficulties in consistently interpreting our data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the Nernst effect in a mesoscopic two-dimensional electron system (2DES) at low magnetic fields, before the onset of Landau level quantization. The overall magnitude of the Nernst signal agrees well with semiclassical predictions. We observe reproducible mesoscopic fluctuations in the signal that diminish significantly with an increase in temperature. We also show that the Nernst effect exhibits an anomalous component that is correlated with an oscillatory Hall effect. This behavior may be able to distinguish between different spin-correlated states in the 2DES.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A mechanism for the reversed field pinch (RFP) dynamo is proposed, based on the nonlinear Hall effect of a saturated helical MHD instability. The sign and magnitude of the effect are shown to be those required for the RFP dynamo. Predictions of the model are in accord with RFP fluctuation measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Young's modulus, stress-strain curves, and failure properties of glass bead-filled EPDM vulcanizates were studied under superposed hydrostatic pressure. The glass bead-filled EPDM was employed as a representation of composite systems, and the hydrostatic pressure controls the filler-elastomer separation under deformation. This separation shows up as a volume change of the system, and its infuence is reflected in the mechanical behavior as a reinforcing effect of variable degree.

The strain energy stored in the composite system in simple tension was calculated by introducing a model which is described as a cylindrical block of elastomer with two half spheres of filler on each end with their centers on the axis of the cylinder. In the derivation of the strain energy, assumptions were made to obtain the strain distribution in the model, and strain energy-strain relation for the elastomer was also assumed. The derivation was carried out for the case of no filler-elastomer separation and was modified to include the case of filler-elastomer separation.

The resulting strain energy, as a function of stretch ratio and volume of the system, was used to obtain stress-strain curves and volume change-strain curves of composite systems under superposed hydrostatic pressure.

Changes in the force and the lateral dimension of a ring specimen were measured as it was stretched axially under a superposed hydrostatic pressure in order to calculate the mechanical properties mentioned above. A tensile tester was used which is capable of sealing the whole system to carry out a measurement under pressure. A thickness measuring device, based on the Hall effect, was built for the measurement of changes in the lateral dimension of a specimen.

The theoretical and experimental results of Young's modulus and stress-strain curves were compared and showed fairly good agreement.

The failure data were discussed in terms of failure surfaces, and it was concluded that a failure surface of the glass-bead-filled EPDM consists of two cones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Under normal incidence of circularly polarized light at room temperature, a charge current with swirly distribution has been observed in the two-dimensional electron gas in Al0.25Ga0.75N/GaN heterostructures. We believe that this anomalous charge current is produced by a radial spin current via the reciprocal spin Hall effect. It suggests a new way to research the reciprocal spin Hall effect and spin current on the macroscopic scale and at room temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have studied the circular photogalvanic effect (CPGE) in a GaAs/AlGaAs two-dimensional electron gas excited by near infrared light at room temperature. The anomalous CPGE observed under normal incidence indicates a swirling current which is realized by a radial spin current via the reciprocal spin-Hall effect. The anomalous CPGE exhibits a cubic cosine dependence on the incidence angle, which is discussed in line with the above interpretation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-dose ion implantation of phosphorus into 4H-SiC (0001) has been investigated with three different ion fluxes ranging from 1.0 to 4.0 x 10(12) P(+)cm(-2.)s(-1) and keeping the implantation dose constant at 2.0 x 10(15) P(+)cm(-2). The implantations are performed at room temperature and subsequently annealed at 1500 degrees C. Photoluminescence and Raman scattering are employed to investigate the implantation-induced damages and the residual defects after annealing. The electrical properties of the implanted layer are evaluated by Hall effect measurements on the sample with a van der Pauw configuration. Based on these results, it is revealed that the damages and defects in implanted layers can be greatly reduced by decreasing the ion flux. Considering room temperature implantation and a relatively low annealing temperature of 1500 degrees C, a reasonably low sheet resistance of 106 Omega/square is obtained at ion flux of 1.0 x 10(12) P(+)cm(-2.)s(-1) with a donor concentration of 4.4 x 10(19)cm(-3).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have studied the quantum Hall effect in Al(x)Ga(1-x)As-double well structure with vanishing g-factor. We determined the density-magnetic field n(s) - B diagrams for the longitudinal resistance R(xx). In spite of the fact that the n(s) - B diagram for conventional GaAs double wells shows a striking similarity with the theory, we observed the strong difference between these diagrams for double wells with vanishing g-factor. We argue that the electron-electron interaction is responsible for unusual behavior of the Landau levels in such a system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Stability of the quantized Hall phases is studied in weakly coupled multilayers as a function of the interlayer correlations controlled by the interlayer tunneling and by the random variation of the well thicknesses. A strong enough interlayer disorder destroys the symmetry responsible for the quantization of the Hall conductivity, resulting in the breakdown of the quantum Hall effect. A clear difference between the dimensionalities of the metallic and insulating quantum Hall phases is demonstrated. The sharpness of the quantized Hall steps obtained in the coupled multilayers with different degrees of randomization was found consistent with the calculated interlayer tunneling energies. The observed width of the transition between the quantized Hall states in random multilayers is explained in terms of the local fluctuations of the electron density.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of the interlayer coupling on formation of the quantized Hall conductor phase at the filling factor v = 2 was studied in the multi-layer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure. On the other hand, the quantized Hall phase of the weakly coupled multi-layers emitted an unexpected asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry is caused by a partial population of the extended electron states formed in the quantized Hall conductor phase due to the interlayer percolation. A sharp decrease of the single-particle scattering time associated with these extended states was observed at the filling factor v = 2. (c) 2007 Elsevier B.V. All rights reserved.