849 resultados para HUMAN SYSTEM INTERACTION
Resumo:
Study of emotions in human-computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested.
Resumo:
As humanoid robots become more commonplace in our society, it is important to understand the relation between humans and humanoid robots. In human face-to-face interaction, the observation of another individual performing an action facilitates the execution of a similar action, and interferes with the execution of different action. This phenomenon has been explained by the existence of shared internal representations for the execution and perception of actions, which would be automatically activated by the perception of another individual's action. In one interference experiment, null interference was reported when subjects observed a robotic arm perform the incongruent task, suggesting that this effect may be specific to interacting with other humans. This experimental paradigm, designed to investigate motor interference in human interactions, was adapted to investigate how similar the implicit perception of a humanoid robot is to a human agent. Subjects performed rhythmic arm movements while observing either a human agent or humanoid robot performing either congruent or incongruent movements. The variance of the executed movements was used as a measure of the amount of interference in the movements. Both the human and humanoid agents produced significant interference effect. These results suggest that observing the action of humanoid robot and human agent may rely on similar perceptual processes. Furthermore, the ratio of the variance in incongruent to congruent conditions varied between the human agent and humanoid robot. We speculate this ratio describes how the implicit perception of a robot is similar to that of a human, so that this paradigm could provide an objective measure of the reaction to different types of robots and be used to guide the design of humanoid robots interacting with humans. © 2004 IEEE.
Resumo:
The authors are concerned with the development of computer systems that are capable of using information from faces and voices to recognise people's emotions in real-life situations. The paper addresses the nature of the challenges that lie ahead, and provides an assessment of the progress that has been made in the areas of signal processing and analysis techniques (with regard to speech and face), and the psychological and linguistic analyses of emotion. Ongoing developmental work by the authors in each of these areas is described.
Resumo:
The Human-Computer Interaction (HCI) with interfaces is an active challenge field in the industry over the past decades and has opened the way to communicate with the means of verbal, hand and body gestures using the latest technologies for a variety of different applications in areas such as video games, training and simulation. However, accurate recognition of gestures is still a challenge. In this paper, we review the basic principles and current methodologies used for collecting the raw gesture data from the user for recognize actions the users perform and the technologies currently used for gesture-HCI in games enterprise. In addition, we present a set of projects from various applications in games industry that are using gestural interaction.
Resumo:
O trabalho aqui apresentado é a Dissertação da minha Tese do curso de Mestrado em Engenharia Eletrotécnica e de Computadores do ISEP, realizada em parceria com o INESC TEC. O trabalho consiste no desenvolvimento de um sistema avançado de interação entre homem-robô, usando ferramentas de software livres e de domínio público e hardware pouco dispendioso e facilmente acessível. Pretende-se que o sistema desenvolvido possa ser adotado por pequenas ou micro empresas, daí a restrição monetária. Este tipo de empresas tem, por norma, uma capacidade de investimento pequena, e ficam impossibilitadas de aceder a este tipo de sistemas automatizados se estes forem caros. No entanto, o robô continua a ser um componente fundamental, sendo dispendioso. Os trabalhos realizados pelos sistemas robóticos podem por um lado, ser repetitivos sem necessidade de grandes ajustes; por outro lado, o trabalho a realizar pode ser bastante diverso, sendo necessários bastantes ajustes com (possivelmente) programação do robô. As empresas podem não ter disponível mão-de-obra qualificada para realização da programação do robô. Pretende-se então um sistema de “ensino” que seja simples e rápido. Este trabalho pretende satisfazer as necessidades de um sistema de interação homem-robô intuitivo mesmo para operadores que não estejam familiarizados com a robótica. Para simplificar a transferência de informação da tarefa a desempenhar pelo sistema robótico é usado um sistema de infravermelhos para delinear a operação a desempenhar, neste caso concreto uma operação de soldadura. O operador usa um apontador com marcadores, a posição destes marcadores é detetada usando duas câmaras para permitir o posicionamento tridimensional no espaço. As câmaras possuem filtros infravermelhos para separar o espectro de luz. Para o controlo do sistema e interface com o robô é usado um computador de baixos recursos computacionais e energéticos, e também de baixo custo. O sistema desenvolvido é portanto computacionalmente leve para poder ser executado neste computador.
Resumo:
One of the main challenges for developers of new human-computer interfaces is to provide a more natural way of interacting with computer systems, avoiding excessive use of hand and finger movements. In this way, also a valuable alternative communication pathway is provided to people suffering from motor disabilities. This paper describes the construction of a low cost eye tracker using a fixed head setup. Therefore a webcam, laptop and an infrared lighting source were used together with a simple frame to fix the head of the user. Furthermore, detailed information on the various image processing techniques used for filtering the centre of the pupil and different methods to calculate the point of gaze are discussed. An overall accuracy of 1.5 degrees was obtained while keeping the hardware cost of the device below 100 euros.