975 resultados para HOST-GUEST CHEMISTRY
Resumo:
Les sels d’imidazolium ont un rôle important dans certaines protéines et acides nucléiques et ont été utilisés à de nombreuses reprises dans des assemblages supramoléculaires en raison de leurs propriétés uniques. Les sels de diimidazolium dérivés sont toutefois moins connus. Ils ont pour l’instant uniquement été utilisés comme des précurseurs de carbènes N-hétérocycliques. Ils sont donc à la base de plusieurs catalyseurs utilisés pour des réactions de couplage croisés mais leurs propriétés sont toutefois méconnues dans le cadre de la chimie supramoléculaire. Cette classe de composés a nottament attiré notre attention en raison de la facilité de modification de leurs propriétés physico-chimiques par modification de leur structure chimique. L’objectif général des travaux présentés dans cette thèse est l’étude des propriétés supramoléculaires des sels de diimidazolium disubstitués en solution (aqueuse ou organique), ainsi qu’en phase solide ou cristal-liquide. L’influence de l’espaceur entre les deux noyaux imidazolium ainsi que l’influence des substituants latéraux et des contre-ions a été étudiée. Dans un premier temps, les propriétés de complexation des sels de diimidazolium à des macrocycles sont étudiées. Les sels bromure sont étudiés en solution aqueuse avec plusieurs cyclodextrines et le cucurbit[7]uril, et les sels hexafluorophosphate sont étudiés en solution organique pour leur complexation avec l’éther couronne DB24C8 et un calix[4]arène. Cette nouvelle classe de composés a montré de très bonnes propriétés de complexation à ces différents macrocycles en solution et a également permis de contrôler différents assemblages supramoléculaires à l’interface air-eau. Dans un deuxième temps, l’étude des sels de phénylènediimidazolium a permis de modifier les propriétés de complexation en solution pour obtenir la formation de complexes multiples avec le cucurbit[7]util en solution aqueuse. Cette même famille de composés a également permis la formation de cristaux liquides ioniques lorsque les substituants sont des chaînes alkyles plus longues. La résolution de plusieurs structures cristallines de différents sels de diimidazolium a finalement permis de comprendre la nature des interactions intermoléculaires à l’état cristallin. La recherche présentée dans cette thèse a donc permis une étude détaillée des propriétés supramoléculaires des sels de diimidazolium dans tous les états de la matière qui leur sont accessibles.
Resumo:
Supra molecular architectures of coordination complexes of liydrazones through non covalent interactions have been explored. Molecular self—assernbly driven by weak interactions such as hydrogen— bonding, K '”T[, C-1-I‘ "TE, van der Waals interactions, and so forth are currently of tremendous research interest in the fields of molecule based materials. The directional properties of the hydrogembonding interaction associate discrete molecules into aggregate structures that are sufficiently stable to be considered as independent chemical species. Chemistry can borrow nature’s strategy to utilize hydrogen-bonding as Well as other noncovalent interactions as found in secondary and tertiary structures of proteins such as the double helix folding of DNA, hydrophobic selflorganization of phospholipids in cell membrane etc. In supramolecular chemistry hydrogen bonding plays an important role in forming a variety of architectures. Thus, the wise modulation and tuning of the complementary sites responsible for hydrogen—bond formation have led to its application in supramolecular electronics, host-guest chemistry, self-assembly of molecular capsules, nanotubes etc. The work presented in this thesis describes the synthesis and characterization of metal complexes derived from some substituted aroylhydrazones. The thesis is divided into seven chapters.
Resumo:
Supramolecular chemistry is a multidisciplinary field which impinges on other disciplines, focusing on the systems made up of a discrete number of assembled molecular subunits. The forces responsible for the spatial organization are intermolecular reversible interactions. The supramolecular architectures I was interested in are Rotaxanes, mechanically-interlocked architectures consisting of a "dumbbell shaped molecule", threaded through a "macrocycle" where the stoppers at the end of the dumbbell prevent disassociation of components and catenanes, two or more interlocked macrocycles which cannot be separated without breaking the covalent bonds. The aim is to introduce one or more paramagnetic units to use the ESR spectroscopy to investigate complexation properties of these systems cause this technique works in the same time scale of supramolecular assemblies. Chapter 1 underlines the main concepts upon which supramolecular chemistry is based, clarifying the nature of supramolecular interactions and the principles of host-guest chemistry. In chapter 2 it is pointed out the use of ESR spectroscopy to investigate the properties of organic non-covalent assemblies in liquid solution by spin labels and spin probes. The chapter 3 deals with the synthesis of a new class of p-electron-deficient tetracationic cyclophane ring, carrying one or two paramagnetic side-arms based on 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) moiety. In the chapter 4, the Huisgen 1,3-dipolar cycloaddition is exploited to synthesize rotaxanes having paramagnetic cyclodextrins as wheels. In the chapter 5, the catalysis of Huisgen’s cycloaddition by CB[6] is exploited to synthesize paramagnetic CB[6]-based [3]-rotaxanes. In the chapter 6 I reported the first preliminary studies of Actinoid series as a new class of templates in catenanes’ synthesis. Being f-block elements, so having the property of expanding the valence state, they constitute promising candidates as chemical templates offering the possibility to create a complex with coordination number beyond 6.
Resumo:
Cation-π interactions are important forces in molecular recognition by biological receptors, enzyme catalysis, and crystal engineering. We have harnessed these interactions in designing molecular systems with circular arrangement of benzene units that are capable of acting as ionophores and models for biological receptors. [n]Collarenes are promising candidates with high selectivity for a specific cation, depending on n, because of their structural rigidity and well-defined cavity size. The interaction energies of [n]collarenes with cations have been evaluated by using ab initio calculations. The selectivity of these [n]collarenes in aqueous solution was revealed by using statistical perturbation theory in conjunction with Monte Carlo and molecular dynamics simulations. It has been observed that in [n]collarenes the ratio of the interaction energies of a cation with it and the cation with the basic building unit (benzene) can be correlated to its ion selectivity. We find that collarenes are excellent and efficient ionophores that bind cations through cation-π interactions. [6]Collarene is found to be a selective host for Li+ and Mg2+, [8]collarene for K+ and Sr2+, and [10]collarene for Cs+ and Ba2+. This finding indicates that [10]collarene and [8]collarene could be used for effective separation of highly radioactive isotopes, 137Cs and 90Sr, which are major constituents of nuclear wastes. More interestingly, collarenes of larger cavity size can be useful in capturing organic cations. [12]Collarene exhibits a pronounced affinity for tetramethylammonium cation and acetylcholine, which implies that it could serve as a model for acetylcholinestrase. Thus, collarenes can prove to be novel and effective ionophores/model-receptors capable of heralding a new direction in molecular recognition and host-guest chemistry.
Resumo:
The work described in this thesis revolves around the 1,1,n,ntetramethyl[n](2,11)teropyrenophanes, which are a series of [n]cyclophanes with a severely bent, board-shaped polynuclear aromatic hydrocarbons (PAH). The thesis is divided into seven Chapters. The first Chapter conatins an overview of the seminal work on [n]cyclophanes of the first two members of the “capped rylene” series of PAHs: benzene and pyrene. Three different general strategies for the synthesis of [n]cyclophanes are discussed and this leads in to a discussion of some slected syntheses of [n]paracyclopahnes and [n](2,7)pyrenophanes. The chemical, structural, spectroscopic and photophysical properties of these benzene and pyrene-derived cyclophanes are discussed with emphasis on the changes that occur with changes in the structure of the aromatic system. Chapter 1 concludes with a brief introduction to [n]cyclophanes of the fourth member of the capped rylene series of PAHs: teropyrene. The focus of the work described in Chapter 2 is the synthesis of of 1,1,n,ntetramethyl[n](2,11)teropyrenophane (n = 6 and 7) using a double-McMurry strategy. While the synthesis 1,1,7,7-tetramethyl[7](2,11)teropyrenophane was successful, the synthesis of the lower homologue 1,1,6,6-tetramethyl[6](2,11)teropyrenophane was not. The conformational behaviour of [n.2]pyrenophanes was also studied by 1H NMR spectroscopy and this provided a conformation-based rationale for the failure of the synthesis of 1,1,6,6-tetramethyl[6](2,11)teropyrenophane. Chapter 3 contains details of the synthesis of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7-9) using a Wurtz / McMurry strategy, which proved to be more general than the double McMurry strategy. The three teropyrenophanes were obtained in ca. 10 milligram quantities. Trends in the spectroscopic properties that accompany changes in the structure of the teropyrene system are discussed. A violation of Kasha’s rule was observed when the teropyrenophanes were irradiated at 260 nm. The work described in the fourth Chapter concentrates on the development of gram-scale syntheses of 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7–10) using the Wurtz / McMurry strategy. Several major modifications to the orginal synthetic pathway had to be made to enable the first several steps to be performed comfortably on tens of grams of material. Solubility problems severely limited the amount of material that could be produced at a late stage of the synthetic pathways leading to the evennumbered members of the series (n = 8, 10). Ultimately, only 1,1,9,9- tetramethyl[9](2,11)teropyrenophane was synthesized on a multi-gram scale. In the final step in the synthesis, a valence isomerization / dehydrogenation (VID) reaction, the teropyrenophane was observed to become unstable under the conditions of its formation at n = 8. The synthesis of 1,1,10,10-tetramethyl[10](2,11)teropyrenophane was achieved for the first time, but only on a few hundred milligram scale. In Chapter 5, the results of an investigation of the electrophilic aromatic bromination of the 1,1,n,n-tetramethyl[n](2,11)teropyrenophanes (n = 7–10) are presented. Being the most abundant cyclophane, most of the work was performed on 1,1,9,9-tetramethyl[9](2,11)teropyrenophane. Reaction of this compound with varying amounts of of bromine revealed that bromination occurs most rapidly at the symmetryrelated 4, 9, 13 and 18 positions (teropyrene numbering) and that the 4,9,13,18- tetrabromide could be formed exclusively. Subsequent bromination occurs selectively on the symmetry-related 6, 7, 15 and 16 positions (teropyrene numbering), but considerably more slowly. Only mixtures of penta-, hexa-, hepta and octabromides could be formed. Bromination reactions of the higher and lower homologues (n = 7, 8 and 10) revealed that the reactivity of the teropyrene system increased with the degree of bend. Crystal structures of some tetra-, hexa-, hepta- and octa-brominated products were obtained. The goal of the work described in Chapter 6 is to use 1,1,9,9- tetramethyl[9](2,11)teropyrenophane as a starting material for the synthesis of warped nanographenophanes. A bromination, Suzuki-Miyaura, cyclodehydrogenation sequence was unsuccessful, as was a C–H arylation / cyclodehydrogenation approach. Itami’s recently-developed K-region-selective annulative -extension (APEX) reaction proved to be successful, affording a giant [n]cyclophane with a C84 PAH. Attempted bay-region Diels-Alder reactions and some cursory host-guest chemistry of teropyrenophanes are also discussed. In Chapter 7 a synthetic approach toward a planar model compound, 2,11-di-tbutylteropyrene, is described. The synthesis could not be completed owing to solubility problems at the end of the synthetic pathway.
Resumo:
This book commemorates the 25th anniversary of the International Izatt-Christensen Award in Macrocyclic and Supramolecular Chemistry. The award, one of the most prestigious of small awards in chemistry, recognizes excellence in the developing field of macrocyclic and supramolecular chemistry
Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field features chapters written by the award recipients who provide unique perspectives on the spectacular growth in these expanding and vibrant fields of chemistry over the past half century, and on the role of these awardees in shaping this growth. During this time there has been an upsurge of interest in the design, synthesis and characterization of increasingly more complex macrocyclic ligands and in the application of this knowledge to understanding molecular recognition processes in host-guest chemistry in ways that were scarcely envisioned decades earlier.
Resumo:
Click chemistry has played a significant role as a rapid and versatile strategy for conjugating two molecular fragments under very mild reaction conditions. Introduction of ferrocene-derived triazole systems using click chemistry has attracted enormous interest in various fields due to its potential applications in electrochemical techniques for detection and sensing. The present discussion focuses on the synthesis of ferrocene-triazole and the importance of using a CuAAC reaction for such conjugation. Applications of ferrocene-based click reactions in conjugate chemistry, asymmetric catalysis, medicinal chemistry, host-guest interactions, and materials chemistry have been highlighted.
Resumo:
Three heterometallic trinuclear Schiff base complexes, [{GuL(1)(H2O)}(2)Ni(CN)(4)]center dot 4H(2)O (1), [{CuL2(H2O)}(2)Ni(CN)(4)] (2), and [{CuL3(H2O)}(2)Ni(CN)(4)] (3) (HL1 = 7-amino-4-methyl-5-azahept-3-en-2-one, HL2 = 7-methylamino-4-methyl-5-azahept-3-en-2-one, and HL3 = 7-dimethylamino-4-methyl-5-azahept-3-en-2-one), were synthesized. All three complexes were characterized by elemental analysis, IR and UV spectroscopies, and thermal analysis. Two of them (1 and 3) were also characterized by single crystal X-ray crystallography. Complex 1 forms a hydrogen-bonded one-dimensional metal-organic framework that stabilizes a helical water chain into its cavity, but when any of the amine hydrogen atoms of the Schiff base are replaced by methyl groups, as in L 2 and L 3, the water chain, vanishes, showing explicitly the importance of the host-guest H-bonding interactions for the stabilization of a water cluster.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The kinetics of the buildup and decay of photoinduced birefringence was examined in a series of host-guest systems: azobenzene-containing crown ethers, differing in the size of the crowns, dissolved in a poly (methyl methacrylate) matrix. In all samples, the kinetics of the buildup of the birefringence was reasonably described by a sum of two exponential functions, the time constants being inversely proportional to the intensity of the pumping light and the magnitudes of the signals at the saturation level depending on the pumping light intensity and sample thickness. The dark decays were best described by the stretched exponential function, with the characteristic parameters (time constant and stretch coefficient) being practically independent of the type of crown ether. The time constants of the signal decay were orders of magnitude shorter than the respective constants of the dark isomerization of the azo crown ethers, thus indicating that the process controlling the decay was a relaxation of the polymer matrix and/or a rearrangement of the flexible parts of the crowns. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Herein we describe the design and synthesis of a series of solid-tethered [2]rotaxanes utilising crown ether-naphthalene diimide or crown ether- bipyridinium host guest interactions. TentaGel polystyrene resins were initially modified in a two-stage procedure to azide functionalised beads before the target supramolecular architectures were attached using a copper catalysed “click” procedure. The final assembly was examined using IR spectroscopy and gel-phase 1H High Resolution Magic Angle Spinning (HR MAS) NMR spectroscopy. The HR MAS technique enabled a direct comparison between the solid-tethered architectures and the synthesis and characterisation of analogous solution-based [2]rotaxanes to be made.
Resumo:
Trimesic acid (TMA) and alcohols were recently shown to self-assemble into a stable, two-component linear pattern at the solution/highly oriented pyrolytic graphite (HOPG) interface. Away from equilibrium, the TMA/alcohol self-assembled molecular network (SAMN) can coexist with pure-TMA networks. Here, we report on some novel characteristics of these non-equilibrium TMA structures, investigated by scanning tunneling microscopy (STM). We observe that both the chicken-wire and flower-structure TMA phases can host 'guest' C60 molecules within their pores, whereas the TMA/alcohol SAMN does not offer any stable adsorption sites for the C60 molecules. The presence of the C60 molecules at the solution/solid interface was found to improve the STM image quality. We have taken advantage of the high-quality imaging conditions to observe unusual TMA bonding geometries at domain boundaries in the TMA/alcohol SAMN. Boundaries between aligned TMA/alcohol domains can give rise to doubled TMA dimer rows in two different configurations, as well as a tripled-TMA row. The boundaries created between non-aligned domains can create geometries that stabilize TMA bonding configurations not observed on surfaces without TMA/alcohol SAMNs, including small regions of the previously predicted 'super flower' TMA bonding geometry and a tertiary structure related to the known TMA phases. These structures are identified as part of a homologic class of TMA bonding motifs, and we explore some of the reasons for the stabilization of these phases in our multicomponent system.
Resumo:
Understanding the dendrimer-drug interaction is of great importance to design and optimize the dendrimer-based drug delivery system. Using atomistic molecular dynamics (MD) simulations, we have analyzed the release pattern of four ligands (two soluble drugs, namely, salicylic acid (Sal), L-alanine (Ala), and two insoluble drugs, namely, phenylbutazone (Pbz) and primidone (Prim)), which were initially encapsulated inside the ethylenediamine (EDA) cored polyamidoamine (PAMAM) dendrimer using the docking method. We have computed the potential of mean force (PMF) variation with generation 5 (G5)-PAMAM dendrimer complexed with drug molecules using umbrella sampling. From our calculated PMF values, we observe that soluble drugs (Sal and Ala) have lower energy barriers than insoluble drugs (Pbz and Prim). The order of ease of release pattern for these drugs from G5 protonated PAMAM dendrimer was found to be Ala > Sal > Prim > Pbz. In the case of insoluble drugs (Prim and Pbz), because of larger size, we observe much nonpolar contribution, and thus, their larger energy barriers can be reasoned to van der Waals contribution. From the hydrogen bonding analysis of the four PAMAM drug complexes under study, we found intermolecular hydrogen bonding to show less significant contribution to the free energy barrier. Another interesting feature appears while calculating the PMF profile of G5NP (nonprotonated)-PAMAM Pbz and G5NP (nonprotonated)-PAMAM-Sal complex. The PMF was found to be less when the drug is bound to nonprotonated dendrimer compared to the protonated dendrimer. Our results suggest that encapsulation of the drug molecule into the host PAMAM dendrimer should be carried out at higher pH values (near pH 10). When such complex enters the human body, the pH is around 7.4 and at that physiological pH, the dendrimer holds the drug tightly. Hence the release of drug can occur at a controlled rate into the bloodstream. Thus, our findings provide a microscopic picture of the encapsulation and controlled release of drugs in the case of dendrimer-based host-guest systems.
Resumo:
This paper deals with a study of the photophysical property of poly(ether imine) (PETIM) dendritic macromolecule in the presence of aromatic compounds. The inherent photoluminescence property of the dendrimer undergoes quenching in the presence of guest aromatic nitro-compounds. From life-time measurements study, it is inferred that the lifetimes of luminescent species of the dendrimer are not affected with nitrophenols as guest molecules, whereas nitrobenzenes show a marginal change in the lifetimes of the species. Raman spectral characteristic of the macromolecular host-guest complex is conducted in order to identify conformational change of the dendrimer and a significant change in the stretching frequencies of methylene moieties of the dendrimer is observed for the complex with 1,3,5-trinitrobenzene, when compared to other complexes, free host and guest molecules. The photophysical behavior of electron-rich, aliphatic, neutral dendritic macromolecule in the presence of electron-deficient aromatic molecules is illustrated in the present study. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The complex formation of alkyl ammonium salts by water-soluble carboxylatopillar5] arene (CP5A) in aqueous medium is reported. p-Xylene diammonium salt and a series of secondary alkyl ammonium salts with various alkyl groups have been prepared and investigated for complex formation. All the ammonium salts exhibit strong host-guest complexation with CP5A under neutral aqueous conditions. H-1 NMR, H-1 DOSY and 2D NOESY NMR experiments have been performed to characterize these inclusion complexes. In this study, the hydrophobic and electrostatic interactions govern the complex formation leading to the formation of pseudorotaxane species. Five pseudo2] rotaxanes and one pseudo3] rotaxane were obtained whose association constant values and stoichiometry were evaluated by an NMR titration method. The results indicate the use of ammonium salts as new complimentary synthons for CP5A in aqueous medium, adding to the repertoire of existing recognition motifs such as paraquat and 1,4-bis(pyridinium) derivatives.