929 resultados para HIGH-SPEED
Suboptimal Midcourse Guidance of Interceptors for High-Speed Targets with Alignment Angle Constraint
Resumo:
Using the recently developed computationally efficient model predictive static programming and a closely related model predictive spread control concept, two nonlinear suboptimal midcourse guidance laws are presented in this paper for interceptors engaging against incoming high-speed ballistic missiles. The guidance laws are primarily based on nonlinear optimal control theory, and hence imbed effective trajectory optimization concepts into the guidance laws. Apart from being energy efficient by minimizing the control usage throughout the trajectory (minimum control usage leads to minimum turning, and hence leads to minimum induced drag), both of these laws enforce desired alignment constraints in both elevation and azimuth in a hard-constraint sense. This good alignment during midcourse is expected to enhance the effectiveness of the terminal guidance substantially. Both point mass as well as six-degree-of-freedom simulation results (with a realistic inner-loop autopilot based on dynamic inversion) are presented in this paper, which clearly shows the effectiveness of the proposed guidance laws. It has also been observed that, even with different perturbations of missile parameters, the performance of guidance is satisfactory. A comparison study, with the vector explicit guidance scheme proposed earlier in the literature, also shows that the newly proposed model-predictive-static-programming-based and model-predictive-spread-control-based guidance schemes lead to lesser lateral acceleration demand and lesser velocity loss during engagement.
Resumo:
The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.
Resumo:
A low power keeper circuit using the concept of rate sensing has been proposed. The proposed technique reduces the amount of short circuit power dissipation in the domino gate by 70% compared to the conventional keeper technique. Also the total power-delay product is 26% lower compared to the previously reported techniques. The process tracking capability of the design enables the domino gate to achieve uniform delay across different process corners. This reduces the amount of short circuit power dissipation that occurs in the cascaded domino gates by 90%. The use of the proposed technique in the read path of a register file reduces the energy requirement by 26% as compared to the other keeper techniques. The proposed technique has been prototyped in 130nm CMOS technology.
Resumo:
With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.
Resumo:
The paper presents an adaptive Fourier filtering technique and a relaying scheme based on a combination of a digital band-pass filter along with a three-sample algorithm, for applications in high-speed numerical distance protection. To enhance the performance of above-mentioned technique, a high-speed fault detector has been used. MATLAB based simulation studies show that the adaptive Fourier filtering technique provides fast tripping for near faults and security for farther faults. The digital relaying scheme based on a combination of digital band-pass filter along with three-sample data window algorithm also provides accurate and high-speed detection of faults. The paper also proposes a high performance 16-bit fixed point DSP (Texas Instruments TMS320LF2407A) processor based hardware scheme suitable for implementation of the above techniques. To evaluate the performance of the proposed relaying scheme under steady state and transient conditions, PC based menu driven relay test procedures are developed using National Instruments LabVIEW software. The test signals are generated in real time using LabVIEW compatible analog output modules. The results obtained from the simulation studies as well as hardware implementations are also presented.
Resumo:
The generalizations of the Onsager model for the radial boundary layer and the Carrier-Maslen model for the end-cap axial boundary layer in a high-speed rotating cylinder are formulated for studying the secondary gas flow due to wall heating and due to insertion of mass, momentum and energy into the cylinder. The generalizations have wider applicability than the original Onsager and Carrier-Maslen models, because they are not restricted to the limit A >> 1, though they are restricted to the limit R e >> 1 and a high-aspect-ratio cylinder whose length/diameter ratio is large. Here, the stratification parameter A = root m Omega(2)R(2)/2k(B)T). This parameter A is the ratio of the peripheral speed, Omega R, to the most probable molecular speed, root 2k(B)T/m, the Reynolds number Re = rho w Omega R(2)/mu, where m is the molecular mass, Omega and R are the rotational speed and radius of the cylinder, k(B) is the Boltzmann constant, T is the gas temperature, rho(w) is the gas density at wall, and mu is the gas viscosity. In the case of wall forcing, analytical solutions are obtained for the sixth-order generalized Onsager equations for the master potential, and for the fourth-order generalized Carrier-Maslen equation for the velocity potential. For the case of mass/momentum/energy insertion into the flow, the separation-of-variables procedure is used, and the appropriate homogeneous boundary conditions are specified so that the linear operators in the axial and radial directions are self-adjoint. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order and second-order in the radial and axial directions for the Onsager equation, and fourth-order and second-order in the axial and radial directions for the Carrier-Maslen equation) are determined. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used `diffuse reflection' boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a `temperature slip' (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity. The predictions of the generalized models are also significantly better than those of the original Onsager and Carrier-Maslen models, which are restricted to thin boundary layers in the limit of high stratification parameter.
Resumo:
Most of the modern distance relays are designed to avoid overreaching due to the transient d.c. component of the fault current, whereas a more likely source of transients in e.h.v. systems is the oscillatory discharge of the system charging current into the fault. Until now attempts have not been made to reproduce these transients in the laboratory. This paper describes an analogue and an accurate digital simulation of these harmonic transients. The dynamic behaviour of a typical polarised mho-type relay is analysed, and results are presented. The paper also advocates the use of active filters for filtering the harmonics associated with e.h.v. system, and hence, to improve the speed of response and accuracy of the protective relays.
Resumo:
In this paper, a new proportional-navigation guidance law, called retro-proportional-navigation, is proposed. The guidance law is designed to intercept targets that are of higher speeds than the interceptor. This is a typical scenario in a ballistic target interception. The capture region analysis for both proportional-navigation and retro-proportional-navigation guidance laws are presented. The study shows that, at the cost of a higher intercept time, the retro-proportional-navigation guidance law demands lower terminal lateral acceleration than proportional navigation and can intercept high-velocity targets from many initial conditions that the classical proportional navigation cannot. Also, the capture region with the retro-proportional-navigation guidance law is shown to be larger compared with the classical proportional-navigation guidance law.
Resumo:
This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.
Resumo:
Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.